Neuroprotective Effects of Delta-9-Tetrahydrocannabinol against FeSO4- and H2O2-Induced Cell Damage on Dopaminergic Neurons in Primary Mesencephalic Cell Culture
Abstract
Delta-9-Tetrahydrocannabinol and other phytocannabinoids have been previously demonstrated to possess neuroprotective effects in murine mesencephalic cell culture models of Parkinson’s disease, in which increased levels of superoxide radicals led to the loss of dopaminergic neurons. In these models, delta-9-tetrahydrocannabinol did not scavenge these radicals but displayed antioxidative capacity by increasing glutathione levels. Based on these findings, in the present study, we investigated whether the neuroprotective effect of delta-9-tetrahydrocannabinol can also be detected in FeSO4– and H2O2-stressed cells. Mesencephalic cultures were concomitantly treated with FeSO4 (350 μM) or H2O2 (150 μM) and delta-9-tetrahydrocannabinol (0.01, 0.1, 1, 10 μM) on the 12th days in vitro for 48 h. On the 14th DIV, dopaminergic neurons were stained immunocytochemically by tyrosine hydroxylase, and fluorescently using crystal violet, Hoechst 33342, and JC-1. FeSO4 and H2O2 significantly reduced the number of dopaminergic neurons by 33 and 36%, respectively, and adversely affected the morphology of surviving neurons. Moreover, FeSO4, but not H2O2, significantly decreased the fluorescence intensity of crystal violet and Hoechst 33342, and reduced the red/green ratio of JC-1. Co-treatment with delta-9-tetrahydrocannabinol at the concentrations 0.01 and 0.1 μM significantly rescued dopaminergic neurons in FeSO4 and H2O2-treated cultures by 16 and 30%, respectively. delta-9-Tetrahydrocannabinol treatment also led to a higher fluorescence intensity of crystal violet and Hoechst 33342, and increased the red/green fluorescence ratio of JC-1 when concomitantly administered with FeSO4 but not H2O2. To conclude, delta-9-tetrahydrocannabinol rescues dopaminergic neurons against FeSO4– and H2O2-induced neurotoxicity. Using fluorescence dyes, this effect seems to be mediated partially by restoring mitochondrial integrity and decreasing cell death, particularly in FeSO4-treated cultures.
This library aims to empower you with knowledge but it does not replace the personalized advice and guidance a healthcare professional can provide. Before implementing any changes to your health regimen based on the contents of this library, we strongly advise you to consult with a qualified healthcare professional. Your doctor’s expertise is essential for interpreting how these insights may apply to your unique health circumstances.