Reversal of age-related cognitive impairments in mice by an extremely low dose of tetrahydrocannabinol

Neurobiology of Aging
2018
Yosef Sarne, Roni Toledano, Lital Rachmany, Effrat Sasson, & Ravid Doron

Please use this link to access this publication.

Abstract

This study was designed to test our hypothesis that an ultra-low dose of delta-9 tetrahydrocannabinol (THC) reverses age-dependent cognitive impairments in old mice and to examine the possible biological mechanisms that underlie this behavioral effect. Old female mice aged 24 months that had been injected once with 0.002 mg/kg THC (3–4 orders of magnitudes lower than doses that induce the conventional cannabinoid effects in mice) performed significantly better than vehicle-treated old mice and performed similarly to naive young mice aged 2 months, in 6 different behavioral assays that measured various aspects of memory and learning. The beneficial effect of THC lasted for at least 7 weeks. The single injection of THC increased the level of Sirtuin1, an enzyme that has been previously shown to be involved in neuroprotection and neuroplasticity, in the hippocampus and in the frontal cortex of old mice, for at least 7 weeks. Magnetic resonance imaging demonstrated a larger volume and higher tissue density in various regions of the brain of THC-treated old mice. These findings suggest that extremely low doses of THC that are devoid of any psychotropic effect and do not induce desensitization may provide a safe and effective treatment for cognitive decline in aging humans.

This library aims to empower you with knowledge but it does not replace the personalized advice and guidance a healthcare professional can provide. Before implementing any changes to your health regimen based on the contents of this library, we strongly advise you to consult with a qualified healthcare professional. Your doctor’s expertise is essential for interpreting how these insights may apply to your unique health circumstances.