Cannabinoids Protect Cells from Oxidative Cell Death: A Receptor-Independent Mechanism
Please use this link to access this publication.
Abstract
Serum is required for the survival and growth of most animal cells. In serum-free medium, B lymphoblastoid cells and fibroblasts die after 2 days. We report that submicromolar concentrations of Δ9-tetrahydrocannabinol (THC), Δ8-THC, cannabinol, or cannabidiol, but not WIN 55,212-2, prevented serum-deprived cell death. Δ9-THC also synergized with platelet-derived growth factor in activating resting NIH 3T3 fibroblasts. The cannabinoids’ growth supportive effect did not correlate with their ability to bind to known cannabinoid receptors and showed no stereoselectivity, suggesting a nonreceptor-mediated pathway. Direct measurement of oxidative stress revealed that cannabinoids prevented serum-deprived cell death by antioxidation. The antioxidative property of cannabinoids was confirmed by their ability to antagonize oxidative stress and consequent cell death induced by the retinoid anhydroretinol. Therefore, cannabinoids act as antioxidants to modulate cell survival and growth of B lymphocytes and fibroblasts.
This library aims to empower you with knowledge but it does not replace the personalized advice and guidance a healthcare professional can provide. Before implementing any changes to your health regimen based on the contents of this library, we strongly advise you to consult with a qualified healthcare professional. Your doctor’s expertise is essential for interpreting how these insights may apply to your unique health circumstances.