Modulation of Recombinant Human T-Type Calcium Channels by Delta 9-Tetrahydrocannabinolic Acid In Vitro

Cannabis and Cannabinoid Research Volume: 7 Issue 1: February 10, 2022
2022
Somayeh Mirlohi, Chris Bladen, Marina Santiago, and Mark Connor

Please use this link to access publication

Introduction: Low voltage-activated T-type calcium channels (T-type ICa), CaV3.1, CaV3.2, and CaV3.3, are opened by small depolarizations from the resting membrane potential in many cells and have been associated with neurological disorders, including absence epilepsy and pain. Δ9-tetrahydrocannabinol (THC) is the principal psychoactive compound in Cannabis and also directly modulates T-type ICa; however, there is no information about functional activity of most phytocannabinoids on T-type calcium channels, including Δ9-tetrahydrocannabinolic acid (THCA), the natural nonpsychoactive precursor of THC. The aim of this work was to characterize THCA effects on T-type calcium channels.

Materials and Methods: We used HEK293 Flp-In-TREx cells stably expressing CaV3.1, 3.2, or 3.3. Whole-cell patch clamp recordings were made to investigate cannabinoid modulation of ICa.

Results: THCA and THC inhibited the peak current amplitude CaV3.1 with pEC50s of 6.0±0.7 and 5.6±0.4, respectively. THC (1 μM) or THC produced a significant negative shift in half activation and inactivation of CaV3.1, and both drugs prolonged CaV3.1 deactivation kinetics. THCA (10 μM) inhibited CaV3.2 by 53%±4%, and both THCA and THC produced a substantial negative shift in the voltage for half inactivation and modest negative shift in half activation of CaV3.2. THC prolonged the deactivation time of CaV3.2, while THCA did not. THCA inhibited the peak current of CaV3.3 by 43%±2% (10 μM) but did not notably affect CaV3.3 channel activation or inactivation; however, THC caused significant hyperpolarizing shift in CaV3.3 steady-state inactivation.

Discussion: THCA modulated T-type ICa currents in vitro, with significant modulation of kinetics and voltage dependence at low μM concentrations. This study suggests that THCA may have potential for therapeutic use in pain and epilepsy through T-type calcium channel modulation without the unwanted psychoactive effects associated with THC.

This library aims to empower you with knowledge but it does not replace the personalized advice and guidance a healthcare professional can provide. Before implementing any changes to your health regimen based on the contents of this library, we strongly advise you to consult with a qualified healthcare professional. Your doctor’s expertise is essential for interpreting how these insights may apply to your unique health circumstances.