Abstract
Background: In addition to the major phytocannabinoids, trans-Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), the cannabis plant (Cannabis sativa L.) synthesizes over 120 additional cannabinoids that are known as minor cannabinoids. These minor cannabinoids have been proposed to act as agonists and antagonists at numerous targets including cannabinoid type 1 (CB1) and type 2 (CB2) receptors, transient receptor potential (TRP) channels and others. The goal of the present study was to determine the agonist effects of the minor cannabinoids: cannabinol (CBN), cannabigerol (CBG), cannabichromene (CBC), cannabitriol (CBT) and cannabidivarin (CBDV) at the CB1 receptor. In addition, the CB1 receptor antagonist effects of Δ9-tetrahydrocannabivarin (Δ9-THCV) were compared with its isomer Δ8-tetrahydrocannabivarin (Δ8-THCV). (2) Methods: CB1 receptor activity was monitored by measuring cannabinoid activation of G protein-gated inward rectifier K+ (GIRK) channels in AtT20 pituitary cells using a membrane potential-sensitive fluorescent dye assay. (3) Results: When compared to the CB1 receptor full agonist WIN 55,212-2 and the partial agonist Δ9-THC, none of the minor cannabinoids caused a significant activation of Gi/GIRK channel signaling. However, Δ9-THCV and Δ8-THCV antagonized the effect of WIN 55,212-2 with half-maximal inhibitory concentrations (IC50s) of 434 nM and 757 nM, respectively. Δ9-THCV antagonism of the CB1 receptor was “ligand-dependent”; Δ9-THCV was more potent in inhibiting WIN 55,212-2 and 2-arachidonoylglycerol (2-AG) than Δ9-THC. (4) Conclusions: While none of the minor cannabinoids caused Gi/GIRK channel activation, Δ9-THCV antagonized the CB1 receptor in an isomer- and ligand-dependent manner.