The Endogenous Cannabinoid System and Its Role in Nociceptive Behavior

Journal of Neurobiology
2004
Benjamin F. Cravatt & Aron H. Lichtman

Abstract

The analgesic properties of exogenous cannabinoids have been recognized for many years and suggest a regulatory role for the endogenous cannabinoid (“endocannabinoid”) system in mammalian nociceptive pathways. The endocannabinoid system includes: (1) at least two families of lipid signaling molecules, the N-acyl ethanolamines (e.g., anandamide) and the monoacylglycerols (e.g., 2-arachidonoyl glycerol); (2) multiple enzymes involved in the biosynthesis and degradation of these lipids, including the integral membrane enzyme fatty acid amide hydrolase; and (3) two G-protein coupled receptors, CB1 and CB2, which are primarily localized to the nervous system and immune system, respectively. Here, we review recent genetic, behavioral, and pharmacological studies that have tested the function of the endocannabinoid system in pain sensation. Collectively, these investigations support a role for endocannabinoids in modulating behavioral responses to acute, inflammatory, and neuropathic pain stimuli.

This library aims to empower you with knowledge but it does not replace the personalized advice and guidance a healthcare professional can provide. Before implementing any changes to your health regimen based on the contents of this library, we strongly advise you to consult with a qualified healthcare professional. Your doctor’s expertise is essential for interpreting how these insights may apply to your unique health circumstances.