
RESEARCH Open Access

Acute upregulation of neuronal
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and it’s role in metabolic defects and
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Abstract

Metabolic defects and neuronal apoptosis initiated by traumatic brain injury (TBI) contribute to subsequent

neurodegeneration. They are all regulated by mechanisms centered around mitochondrion. Type-1 cannabinoid

receptor (CB1) is a G-protein coupled receptor (GPCR) enriched on neuronal plasma membrane. Recent evidences

point to the substantial presence of CB1 receptors on neuronal mitochondrial outer membranes (mtCB1) and the

activation of mtCB1 influences aerobic respiration via inhibiting mitochondrial cyclic adenosine monophosphate

(cAMP)/protein kinase A (PKA)/complex I pathway. The expression and role of neuronal mtCB1 under TBI are

unknown. Using TBI models of cultured neurons, wild type and CB1 knockout mice, we found mtCB1 quickly

upregulated after TBI. Activation of mtCB1 promoted metabolic defects accompanied with ATP shortage but

protected neurons from apoptosis. Selective activation of plasma membrane CB1 showed no effects on neuronal

metabolism and apoptosis. Activation of mtCB1 receptors inhibited mitochondrial cAMP/PKA/complex I and

resulted in exacerbated metabolic defects accompanied with a higher ratio of ATP reduction to oxygen consumption

decrease as well as neuronal apoptosis. Further research found the remarkable accumulation of protein kinase B (AKT)

on neuronal mitochondria following TBI and the activation of mtCB1 upregulated mitochondrial AKT/complex

V activity. Upregulation of mitochondrial AKT/complex V activity showed anti-apoptosis effects and alleviated

ATP shortage in metabolic defects. Taken together, we have identified mtCB1 quickly upregulate after TBI and

a dual role the mtCB1 might play in metabolic defects and neuronal apoptosis initiated by TBI: the inhibition

of mitochondrial cAMP/PKA/complex I aggravates metabolic defects, energy insufficiency as well as neuronal

apoptosis, but the coactivation of mitochondrial AKT/complex V mitigates energy insufficiency and neuronal apoptosis.
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Introduction

Metabolic defects are common pathological processes

after traumatic brain injury (TBI) and relate to subse-

quent brain atrophy and cognitive dysfunction [1].

Metabolic defects following TBI are not the results of

ischemia or metabolic substrate insufficiency and the

underlying mechanisms are not definitely clarified. TBI

initiates a number of biochemical processes which lead to

massive ion shifts with increased calcium in the intracellu-

lar compartment. Calcium overload in mitochondrion

impairs mitochondrial function in aerobic metabolism

and eventually impedes energy production even when

there are sufficient oxygen and substrate present [2].

Neuronal apoptosis is another pervasive pathological

phenomenon responsible for the neurodegenerative

changes following TBI [3], which is also tightly associated

with the mitochondrial mechanisms [4].

Endocannabinoids are implicated in a broad range of

neurobiological processes including neuronal survival

after cerebral ischemia or trauma [5, 6]. Endogenous

cannabinoids produce the majority of their biological
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effects by activating two receptors: type-1 cannabinoid

receptor (CB1) and type-2 cannabinoid receptor (CB2).

CB1 receptors are the most abundant G-protein

coupled receptor (GPCR) in mammalian brain and ac-

count for most of the biological actions of cannabinoid

drugs. Neuronal CB1 receptors are the more abundant

CB1 receptors which are highly enriched on neuronal

plasma membranes. Although, the CB1 receptors are

identified as typical plasma membrane GPCRs, recent

evidences have pointed to the substantial presence of

CB1 receptors on neuronal mitochondrial outer mem-

branes and their activation influences mitochondrial

cyclic adenosine monophosphate (cAMP) accumula-

tion, protein kinase A (PKA) activity, complex I activity

and mitochondrial respiration [7].

The expression and roles of neuronal mtCB1 under

TBI are currently unknown. Considering the central role

of mitochondria in regulating cellular aerobic metabol-

ism and apoptosis, it is reasonable to hypothesize mtCBI

might play roles in TBI-induced metabolic defects and

neuronal apoptosis. Here, we investigated the early ex-

pression of neuronal mtCB1 and it’s action on metabolic

defects and neuronal apoptosis following TBI by select-

ively using cell-permeable or impermeable CB1 receptor

ligands in TBI models of cultured neurons, wild type

and CB1 knockout mice.

Results

TBI induced acute upregulation of mtCB1 receptors

At first, we investigated the expression of mtCB1 recep-

tors at acute stage on ipsilateral cortex and cultured

neuron post lesion. WB analysis revealed TBI caused

great upregulation of CB1 receptors on mitochondria

(2.5 times higher than sham in cortex of wild type mice

and 3.5 times higher than sham in cultured neurons)

24 h post injury (Fig. 1a and b). Only relatively small

CB1 increase was observed on plasma membranes

(1.16 times higher than sham in cortex of wild type mice

and 1.25 times higher than sham in cultured neurons)

24 h post injury (Fig. 1c, d). CB1 expression could hardly

be detected in CB1 knockout mice (Fig. 1a, c).

Activation of mtCB1 aggravated metabolic defects

following TBI

Next, we investigated the effects of CB1 on aerobic

metabolism after TBI in vivo. The cell-permeable CB1

agonist tetrahydrocannabinol (THC, 5 mg/kg) and an-

tagonist/inverse agonist AM251 (0.5 mg/kg) were used

to control the activity of intracellular CB1 receptors.

Microdialysis in wild type brains from 22 to 27 h

post injury showed lower glucose and pyruvate levels,

and increased lactate level as well as lactate/pyruvate

ratio (LPR) (Fig. 2A1–A4). Metabolic defects were

also demonstrated by the changed levels of metabo-

lites in injured CB−/− brains (Fig. 2B1–B4). It was

noticeable that CB1 knockout promoted metabolic defects

after TBI as demonstrated by microdialysis of metabolite

levels in CB−/− and wild type mice (p < 0.05).

In wild type mice, intraperitoneal administration of

THC (5 mg/kg) resulted in decreased glucose and

pyruvate levels, and increased lactate level as well as

LPR suggesting an aggravated metabolic condition

while AM251 showed opposite effects (Fig. 2A1–A4).

Metabolite analysis was also made in CB1−/− mice

treated with THC (5 mg/kg) or AM251 (0.5 mg/kg)

after injury and results showed metabolite levels were not

significantly differ from those of vehicle (Fig. 2B1–B4) in-

dicating the CB1 receptors were the specific targets of

THC and AM251. Single inhibition of plasma membrane

CB1 receptors by cell-impermeable CB1 antagonist/in-

verse agonist hemopressin (0.5 mg/kg) did not show

any effects on aerobic metabolism after TBI suggest-

ing the effects were due to the intracellular CB1 re-

ceptors (Fig. 2C1–C4).

To prove the effects were due to neuronal mtCB1 re-

ceptors but not CB1 receptors on other cells, we further

tested the metabolites in neuronal models treated with

cell-permeable CB1 ligands. In vivo after injury, as a re-

sult of the mitochondrial impairment, pyruvate no lon-

ger enters the tricarboxylic acid cycle and the need for

lactate decrease. On the other hand, pyruvate and glyco-

gen are heavily metabolized into lactate in astrocytes.

Therefore, lactate accumulates and pyruvate decreases in

Fig. 1 TBI induced acute upregulation of mtCB1 and plasma membrane CB1 24 h post injury. Western blot analysis of mtCB1 and plasma membrane

CB1 24 h post injury showed CB1 increased in mitochondria separated from cultured neurons and wild type mice after injury but not CB1−/− mice

(a, b). CB1 relatively slightly increased in plasma membrane fractions separated from cultured neurons and wild type mice after injury but not

CB1−/− mice (c, d). Cadherin is a plasma membrane protein, Tom20 is a mitochondrial protein. Values were expressed as mean ± SE (*p < 0.05

versus sham, ***p < 0.001 versus sham)
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the extracellular space, leading to the elevation of LPR

[8]. However, in neuronal model of injury without astro-

cytes, the neuronal need for pyruvate reduces and the

transformation of pyruvate into lactate greatly decreases

due to the lack of astrocytes. Therefore, pyruvate and

lactate both accumulate in the extracellular space [9].

Neuronal traumatic injury induced metabolic defects

demonstrated by higher extracellular pyruvate and lac-

tate levels, and reduced cellular oxygen consumption

and mitochondrial ATP concentration as compared to

sham group (Fig. 2D1–D4). In cultured neurons after in-

jury, the cell-permeable CB1 agonist HU210 (0.5 μM)

resulted in increased extracellular pyruvate (1.23 folds

higher than vehicle) and lactate (1.22 folds higher than

vehicle) levels, and reduced cellular oxygen consumption

(83.3 % of vehicle) and mitochondrial ATP concentra-

tion (95.3 % of vehicle) (Fig. 2D1–D4). The AM251

(5 μM) decreased extracellular pyruvate (82.6 % of

vehicle) and lactate (84.1 % of vehicle) levels, and in-

creased cellular oxygen consumption (1.36 folds higher

than vehicle) and mitochondrial ATP concentration

(1.06 folds higher than vehicle) (Fig. 2D1–D4). HU210

(0.5 μM) and AM251 (5 μM) were also administrated to

primary neuronal cultures prepared from CB1−/− mouse

(CB1−/− neurons). HU210 or AM251 did not change brain

metabolism in injured CB1−/− neurons (Fig. 2E1–E4).

Then we selectively controlled the plasma CB1 recep-

tors by hemopressin (5 μM) or cell-impermeable CB1

agonist HU210-biotin (0.5 μM) in cultured neurons. No

changes were found in extracellular metabolite levels,

oxygen consumption or mitochondrial ATP concentra-

tion after treatment (Fig. 2F1–F4).

To determine the effects were due to the direct modu-

lation of mtCB1 or to an indirect function of CB1 recep-

tors located on other intracellular organelles such as

lysosomes [10], mitochondria were purified from injured

neurons, wild type and CB1−/− mice after injury then

Fig. 2 MtCB1 regulated metabolic defects following TBI. Traumatic

injury changed metabolite levels in wild types, CB−/− mouse brains

as well as neuronal models (A1–A4, B1–B4 and D1–D4). THC and

AM251 reversely mediated metabolite levels in wild type mice brain

following TBI (A1–A4). THC and AM251 did not affect metabolite

levels in CB−/− mice brain following TBI (B1–B4). Hemopressin did not

affect metabolite levels in wild type mice brain following TBI (C1–C4).

Traumatic injury changed metabolite levels in cultured neuronal

models (D1–D4). HU210 and AM251 reversely mediated metabolite

levels in cultured neurons following injury (D1–D4). HU210 and AM251

did not changed metabolite levels in cultured CB−/− neurons following

injury (E1–E4). HU210-biotin and hemopressin did not affect metabolite

levels in cultured neurons (F1–F4). HU210 and AM251 reversely

mediated metabolite levels in mitochondria separated from cultured

neurons or wild-type mice after injury, but not in mitochondria from

CB1−/− mice after injury (G1-G4). Data were expressed as mean ± SE

(**p < 0.01 versus sham, ***p < 0.001 versus sham, #p < 0.05 versus

vehicle, ##p < 0.01 versus vehicle, ###p < 0.001 versus vehicle)
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treated with HU210 (0.5 μM) or AM251 (5 μM). The

drugs still apparently controlled pyruvate and lactate

levels, oxygen consumption and ATP concentration in

mitochondria separated from cultured neurons or wild-

type mice after injury, but not in mitochondria separated

from CB1−/− mice after injury (Fig. 2G1–G4).

MtCB1 activation protected neurons from apoptosis

following injury

In wild type model of TBI treated with vehicle, about

8.9 % cells in vivo and 20.1 % in vitro showed apoptosis

24 h post injury (Fig. 3a, b). TUNEL study 24 h post in-

jury showed THC (5 mg/kg in vivo and 10 μM in vitro)

or HU-210 (0.1 mg/kg in vivo and 0.5 μM in vitro) sig-

nificantly mitigated cellular apoptosis (4.1 % in vivo and

9.7 % in vitro in THC, 6.7 % in vivo and 13.7 % in vitro

in HU-210), while the AM251 (0.5 mg/kg in vivo and

5 μM in vitro) significantly promoted apoptosis (11.6 %

in vivo and 24.8 % in vitro) (Fig. 3a, b). In CB1−/−

models, the same dose of THC, HU-210 or AM251 did

not affect cellular apoptosis both in vivo and vitro com-

pared with the vehicle indicating the effects were due to

CB1 receptors (Fig. 3c, d). It was noticeable that CB1

knockout promoted neuronal apoptosis both in vivo

and vitro as demonstrated by the number of TUNEL

positive cells in CB1−/− and wild type treated with ve-

hicle (p < 0.05) (Fig. 3a, b, c and d). In vitro of wild

type hemopressin or HU210-biotin did not show any

effects suggesting the neuronal plasma membrane

CB1 receptors were not involved, however in vivo of wild

type hemopressin promoted apoptosis and HU210-biotin

inhibited apoptosis (Fig. 3e, f ).

The mitochondrion serve as a crucial role in regu-

lating neuronal apoptosis in TBI, both as an amplifier

of extrinsic pro-apoptotic signal and the source of the

activation of intrinsic apoptotic pathway [4]. The

mitochondrial apoptotic pathway is classified as cas-

pase dependent or caspase independent. In a caspase

dependent pathway, cyt c is the necessary participant,

whereas apoptosis inducing factor (AIF) is involved in the

caspase independent pathway. Under pro-apoptotic

stimulation such as traumatic injury, the release of cyt c

from mitochondria into the cytosol triggers apoptosome

assembly and the subsequent caspase activation and

apoptosis, while the AIF is released and translocated

into the nucleus to promote caspase independent

DNA degradation [11].

To determine the effects were due to the direct modu-

lation of mtCB1 or to an indirect function of CB1 recep-

tors located on other intracellular organelles which

could also be modulated by cell-permeable ligands,

mitochondria were purified from injured neurons, wild

type and CB1−/− mice 24 h after injury and treated with

HU210 (0.5 μM) or AM251 (5 μM). Cyt c and AIF

release were measured in supernatants following pellet-

ing of the mitochondrial suspensions. Immunoblots of

supernatants revealed HU-210 significantly inhibited cyt

c (36.5 % of vehicle in mitochondria of neurons and

73.2 % of vehicle in mitochondria of wild types) and AIF

(41.0 % of vehicle in mitochondria of neurons and

76.0 % of vehicle in mitochondria of wild types) release,

whereas AM251 promoted cyt c (2.84 folds higher than

vehicle in mitochondria of neurons and 1.79 folds higher

than vehicle in mitochondria of wild types) and AIF

(2.49 folds higher than vehicle in mitochondria of neu-

rons and 1.59 folds higher than vehicle in mitochondria

of wild types) release (Fig. 3g, h).

Mitochondrial cAMP/PKA/complex I inhibition promoted

metabolic defects and neuronal apoptosis

As mitochondrial cAMP/PKA/complex I pathway has

been found to be the downstream target of mtCB1 and

is involved in mtCB1 mediated aerobic metabolism of

normal neurons [7]. We tested the possible effects of

mitochondrial cAMP/PKA/complex I pathway on meta-

bolic defects and neuronal apoptosis after TBI. Mito-

chondria were purified from injured neurons and wild

type mice then treated with HU-210 (0.5 μM), AM251

(5 μM), H89 (a well-known pharmacological inhibitor of

PKA, 1.0 mM), rotenone (specific and potent mitochon-

drial complex I inhibitor, 2.5 μM) or forskolin (a select-

ive activator of adenylate cyclase, 1.5 mM). The results

showed HU-210 significantly decreased mitochondrial

cAMP concentration (59.7 % of vehicle in mitochondria

of neurons and 68.0 % of vehicle in mitochondria of

wild types), PKA activity (70.8 % of vehicle in mito-

chondria of neurons and 79.2 % of vehicle in mitochon-

dria of wild types) and complex I activity (77.8 % of

vehicle in mitochondria of neurons and 86.2 % of ve-

hicle in mitochondria of wild types), while AM251

showed opposite effects on them (1.47 folds higher than

vehicle in mitochondria of neurons and 1.38 folds

higher than vehicle in mitochondria of wild types to

cAMP, 1.37 folds higher than vehicle in mitochondria

of neurons and 1.29 folds higher than vehicle in mito-

chondria of wild types to PKA, 1.26 flods higher than

vehicle in mitochondria of neurons and 1.17 folds

higher than vehicle in mitochondria of wild types to

complex I) (Fig. 4A1, B1).

The inhibition of mitochondrial cAMP/PKA/complex

I activity by H89 significantly increased extramitochon-

drial pyruvate (1.15 folds higher than vehicle in mito-

chondria of neurons and 1.13 folds higher than vehicle

in mitochondria of wild types) and lactate levels (1.13

folds higher than vehicle in mitochondria of neurons

and 1.11 folds higher than vehicle in mitochondria of

wild types), and decreased oxygen consumption (88.5 %

of vehicle in mitochondria of neurons and 90.5 % of
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Fig. 3 (See legend on next page.)
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vehicle in mitochondria of wild types) accompanied with

ATP insufficiency (90.8 % of vehicle in mitochondria of

neurons and 93.0 % of vehicle in mitochondria of wild

types) (Fig. 4A3, B3). The ratio of ATP decrease to oxy-

gen consumption reduction (percentage of ATP reduc-

tion/percentage of oxygen consumption reduction =

12.7 %/13.8 % in mitochondria of cultured neurons,

7.0 %/9.5 % in mitochondria of wild type mice) is higher

than that of mtCB1 activation (percentage of ATP reduc-

tion/percentage of oxygen consumption reduction =

4.7 %/16.7 % in cultured neurons, 7.2 %/27.2 % in

mitochondria of cultured neurons, 5.3 %/16.2 % in mito-

chondria of wild type mice) (p < 0.05). Parallel supernatant

cyt c and AIF analysis demonstrated a significant promo-

tion of mitochondrial cyt c (1.71 folds higher than vehicle

in mitochondria of neurons and 1.68 folds higher than ve-

hicle in mitochondria of wild types) and AIF (1.64 folds

higher than vehicle in mitochondria of neurons and 1.61

folds higher than vehicle in mitochondria of wild types)

release was induced by H89 (1.0 mM) treatment (Fig. 4A2,

A3, B2 and B3). Similar results (1.19 folds higher than ve-

hicle to pyruvate, 1.17 folds higher than vehicle to lactate,

Fig. 4 MtCB1 regulated neuronal metabolic defects and apoptosis through mitochondrial cAMP/PKA/complex I pathway. HU-210 inhibited

cAMP/PKA/complex I activity in mitochondria purified from injured neurons and wild type mice while AM251 showed opposite effect (A1, B1).

Mitochondrial cAMP/PKA/complex I pathway inhibitor H89 or rotenone promoted mitochondrial metabolic defects, cyt c and AIF release (A2, A3,

B2 and B3) while the activator forskolin showed opposite effects (A4 and B4). HU210 and AM251 did not affect cAMP/PKA/complex I activity in

mitochondria purified from CB−/− mice following injury (c). Tom20 is a mitochondrial protein. Data were expressed as mean ± SE. (#p < 0.05

versus vehicle, ##p < 0.01 versus vehicle)

(See figure on previous page.)

Fig. 3 MtCB1 regulated neuronal apoptosis following injury. Both in vivo and vitro of wild type 24 h post injury, TUNEL study showed THC and

HU210 protected neurons from apoptosis while AM251 promoted apoptosis compared with vehicle (a, b). THC, HU-210 or AM251 did not affect

cellular apoptosis both in vivo and vitro of CB1−/− (c, d). Compared with vehicle, hemopressin or HU210-biotin did not affect cellular apoptosis in

vitro of wild type but reversely mediated apoptosis in vivo of wild type (e, f). Western blot analysis showed HU210 or AM251 reversely mediated

mitochondrial cyt c and AIF release of wild type both in vivo and vitro but not in CB1−/− mice (g, h). Nuclear morphology was indicated

by DAPI staining and DNA breaks were detected by TUNEL analyses. Tom20 is a mitochondrial protein. bar: 25 μm. Data were expressed

as mean ± SE (#p < 0.05 versus vehicle, ##p < 0.01 versus vehicle, ###p < 0.001 versus vehicle)
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86.2 % of vehicle to oxygen consumption, 87.3 % of ve-

hicle to ATP production, 1.60 folds higher than vehicle to

cyt c and 1.44 folds higher than vehicle to AIF in mito-

chondria of neurons/1.17 folds higher than vehicle to

pyruvate, 1.15 folds higher than vehicle to lactate, 88.2 %

of vehicle to oxygen consumption, 89.3 % of vehicle to

ATP production, 1.58 folds higher than vehicle to cyt c

and 1.40 folds higher than vehicle to AIF in mitochondria

of wild types) were also seen in rotenone treatment groups

(Fig. 4A2, A3, B2 and B3). The forskolin treatment

showed opposite effects in mitochondria separated from

cultured neurons and wild type mice (Fig. 4 A4, B4).

Same dose of HU-210 and AM251 were also adminis-

trated to mitochondria separated from CB1−/− mice.

Results showed no changes were found in mitochon-

drial cAMP/PKA/complex activity suggesting CB1 re-

ceptors were the specific targets (Fig. 4c).

Protein kinase B (AKT) accumulated in neuronal

mitochondria after TBI and mtCB1 activation upregulated

mitochondrial AKT/complex V activity

The direct downregulation of mitochondrial cAMP/PKA/

complex I resulted in a lower efficiency of ATP synthesis

compared with that of mtCB1 activation as demon-

strated by higher ratio of ATP decrease to oxygen

consumption reduction. In addition, direct mitochon-

drial PKA/complex I inhibition increased cyt c and

AIF release which incurred neuronal apoptosis. This

was opposite to the anti-apoptosis effects of direct

mtCB1 activation as demonstrated in our experiment.

Thus we deduced that there might have another anti-

apoptosis pathway involved in the mtCB1 activation.

Protein kinase B (AKT) which is another well-known

downstream target of CB1 was studied. At first, we

tested whether there was mitochondrial accumulation of

AKT under the stimulation of TBI. Western blots were

performed on mitochondria separated from cultured

neurons, wild type and CB−/− mice. Western blots ana-

lysis showed approximately 5.3–6.3 folds increase to

AKT protein expression in mitochondria separated from

cultured neurons (5.33 folds higher than sham), wild

type (6.26 folds higher than sham) and CB1−/− mice

(6.07 folds higher than sham) 24 h after injury (Fig. 5A1,

A2). Although the AKT value in mitochondria from wild

type TBI model was higher than that of CB1−/− mice,

the difference was statistically nonsignificant (p > 0.05)

Fig. 5 TBI induced AKT accumulation in neuronal mitochondria and mtCB1 regulated mitochondrial AKT/complex V activity. Western blot analysis

of mitochondrial total AKT and pAKT showed AKT greatly increased in mitochondria separated from neurons, wild type or CB1−/− mice 24 h post

injury and most of them are unphosphorylated (A1 and A2). HU210 increased AKT/complex V activity in mitochondria purified from cultured

neurons or wild type mice while AM251 showed opposite effects (A3 and A4). HU-210 and AM251 did not affect AKT/complex V activity in

mitochondria from CB1−/− mice (b). Tom20 is a mitochondrial protein. Data were expressed as mean ± SE. (##p < 0.01 versus vehicle, *p < 0.05

versus sham, ***p < 0.001 versus sham)
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indicating the CB1 knockout did not influence mito-

chondrial AKT accumulation following TBI. Then,

phospho-Ser473-AKT and phospho-Thr308-AKT, two

main kind of phosphorylated AKT, were analyzed and

results showed only a minor increase of phosphorylated

AKT (1.32, 1.29 and 1.32 folds higher than sham in

mitochondria of wild types, CB−/− and neurons respect-

ively to pSer473-AKT/1.20, 1.19 and 1.29 folds higher

than sham in mitochondria of wild types, CB−/− and

neurons respectively to pThr308-AKT) was found on

mitochondria suggesting the TBI-induced AKT accumu-

lation on mitochondria might largely be unphosphory-

lated (Fig. 5A1).

Then we tested the effects of mtCB1 activation on

mitochondrial AKT and complex V activity. The results

showed HU-210 (0.5 μM) significantly increased mito-

chondrial AKT (1.76 folds higher than vehicle in mito-

chondria of neurons and 1.71 folds higher than vehicle

in mitochondria of wild type) and complex V (1.63 folds

higher than vehicle in mitochondria of neurons and 1.59

higher than vehicle in mitochondria of wild types) activ-

ities, while AM251 (5 μM) showed opposite effects

(56.3 % of vehicle in mitochondria of neurons and

60.8 % of vehicle in mitochondria of wild type to AKT/

65.0 % of vehicle in mitochondria of neurons and 67.2 %

of vehicle in mitochondria of wild types to complex V)

on them (Fig. 5A3, A4). Same dose of HU-210 and AM251

did not show any effects on mitochondria from CB1−/−

mice indicating the effects were due to CB1 reporters

(Fig. 5b).

Mitochondrial AKT activation alleviated neuronal

metabolic defects and apoptosis

Then we investigated if the activation of mitochondrial

AKT/complex V was directly involved in the protection

effects on metabolic defects and apoptosis after TBI.

Mitochondria were purified from injured neurons or

wild type mice then treated with sodium valproate

(VPA, 1.0 mM) which could increase the activation

dependent phosphorylation of Ser-473 of AKT through

inhibitory effect on histone deacetylase [12].

The results showed VPA resulted in decreased pyru-

vate (89.5 % of vehicle in mitochondria of neurons

and 91.2 % of vehicle in mitochondria of wild types)

and lactate (90.3 % of vehicle in mitochondria of neu-

rons and 91.5 % of vehicle in mitochondria of wild

types), and increased oxygen consumption (1.10 folds

higher than vehicle in mitochondria of neurons and

1.09 folds higher than vehicle in mitochondria of wild

types) accompanied with raised ATP supply (1.33 folds

higher than vehicle in mitochondria of neurons and 1.21

folds higher than vehicle in mitochondria of wild types)

(Fig. 6A1, B1). The ratio of ATP rise to oxygen consump-

tion increase (percentage of ATP increase/percentage of

oxygen consumption increase = 133 %/110 % in mito-

chondria from neuron, 121 %/109 % in mitochondria from

Fig. 6 Mitochondrial AKT/complex V pathway regulated neuronal metabolic defects and apoptosis. AKT activator VPA alleviated metabolic

defects, cyt c and AIF release in mitochondria purified from injured neurons or wild type mice (A1 and B1). Preincubation 30 min with AKT

specific inhibitor API-2 counteracted the VPA induced cyt c and AIF release and a concentration-dependent effect was induced by 2.0 and

4.0 mM VPA (A2, A3, B2 and B3). Tom20 is a mitochondrial protein. Data were expressed as mean ± SE. (#p < 0.05 versus vehicle, ##p < 0.01

versus vehicle)
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wild type mice) was higher than that of mtCB1 activation.

Parallel supernatants cyt c and AIF analysis demonstrated

VPA significantly inhibited the mitochondrial cyt c

(31.2 % of vehicle in mitochondria of neurons and 34.0 %

of vehicle in mitochondria of wild types) and AIF (49.3 %

of vehicle in mitochondria of neurons and 45.2 % of ve-

hicle in mitochondria of wild types) release (Fig. 6A2, A3,

B2 and B3). Preincubation 30 min with AKT specific in-

hibitor API-2 (1 mM) significantly counteracted the VPA

(1 mM) induced cyt c (83.0 % of vehicle in mitochondria

of neurons and 64.8 % of vehicle in mitochondria of wild

types) and AIF release (66.8 % of vehicle in mitochondria

of neurons and 69.0 % of vehicle in mitochondria of wild

types) (Fig. 6A2, A3, B2 and B3). Examination of the

concentration dependent effects revealed that greater

responses were induced by 2.0 and 4.0 mM VPA

(Fig. 6A2, A3, B2 and B3).

Discussion

This is the first study to report on the effects of mtCB1

in TBI. Our results present clear evidence that at least

two pathways are the downstream targets of mtCB1 and

play a dual role in metabolic defects and neuronal apop-

tosis after TBI.

As the CB1 receptors traditionally are believed to exist

on the plasma membranes, neuroprotective effects of

the lipophilic cannabinoids are ascribed to nonspecific

alterations of membrane properties induced by plasma

membrane CB1 receptors. This study showed a relatively

small upregulation of plasma membrane CB1 receptors

compared to the strong upregulation of mitochondrial

CB1 receptors at the first 24 h after TBI. Considering

the fast and great increase of endogenous cannabinoid

levels (10-fold within 4 h) following TBI [5] there might

have a greater over activation of mtCB1 receptors at

least at the acute stage following TBI. Consequently we

further demonstrated mtCB1 activation promoted meta-

bolic defects accompanied with ATP shortage but

protected neurons from apoptosis. Although in vitro sin-

gle modulation of CB1 receptors located on neuronal

plasma membranes by cell-impermeable ligands did not

show significant effects, in vivo inhibition of plasma

membrane CB1 receptors by cell-impermeable antagon-

ist promoted apoptosis and cell-impermeable agonist

inhibited apoptosis. The underlying cause of this differ-

ence between cultured neurons and mice treated with

cell-impermeable ligands was not definitely clarified in

this experiment, however it was not entirely unexpected.

According to previous reports, except for neurons,

CB1 receptors also express on the cerebromicrovascu-

lar endothelial cells which represent the main compo-

nent of the blood brain barrier and are involved in

endocannabinoid (eCB) system mediated vasodilation,

astrocytes and microglias all of which are main

sources of inflammatory mediators following TBI [13–15].

In vivo studies have proved activation of plasma

membrane CB1 receptors displays neuroprotective ef-

fect based on the multipotent properties such as the

suppression of the formation of reactive oxygen spe-

cies (ROS), vasodilators, anti-inflammatory agents and

inhibitors of excitotoxicity [16].

The CB2 receptors which are well recognized on resi-

dent inflammatory cells within the CNS [17] and show

neuroprotective effects through attenuating inflamma-

tory response [18] might also be activated by the cell-

impermeable CB1 agonist, as most CB1 agonists show

little selectivity between the CB1 and CB2 receptors,

thus involved in the agonist-induced protective effects in

vivo. However, the contrary effects induced by the cell-

impermeable CB1 antagonist could demonstrate the

CB1 specificity as the CB1 antagonist compounds in-

cluding hemopressin and AM251 are highly selective

(>1000 fold selective for CB1 vs CB2) [19]. Thus the

anti-apoptosis effect by cell-impermeable CB1 agonist in

vivo might be due to the activation of plasma membrane

CB1 receptors located on non-neuronal cells in brain.

For further exploring the mechanisms underlying the

mtCB1 modulated aerobic metabolism and apoptosis,

mitochondrial cAMP/PKA/complex I pathway was ex-

amined in mitochondria after treating with CB1 ligands.

We did find mtCB1 activation inhibited mitochondrial

cAMP/PKA/complex I signaling pathway and direct

cAMP/PKA/complex I inhibition by CB1 agonist did ag-

gravate metabolic defects as mentioned by Bénard [7].

However, cAMP/PKA/complex I inhibition also pro-

moted mitochondrial cyt c and AIF release, implying a

pro-apoptosis effect. This phenomenon is also consistent

with the common sense that the insufficient energy sup-

ply aggravates mitochondrial impairment induced by

TBI due to the failure of energy dependent membrane

ion pumps to facilitate restoration of ionic gradients,

thus, promotes apoptosis. It was paradoxical that mtCB1

activation via mitochondrial cAMP/PKA/complex I

pathway inhibition aggravated metabolic defects accom-

panied with ATP insufficiency but protected neurons

from apoptosis following TBI. In addition, the ratio of

ATP decrease to oxygen consumption reduction after

direct cAMP/PKA/complex I inhibition by H89 or rote-

none was higher than that of indirect inhibition by CB1

agonist indicating mtCB1 activation might have miti-

gated ATP uncoupling in oxidative phosphorylation. De-

crease in the coupling of the electron transport chain

and oxidative phosphorylation followed by lower ATP

production has been demonstrated shortly after TBI in

rodents [20].

AKT (also known as PKB or RAC-PK) is an intracellu-

lar serine/threonine kinase involved in regulating cell

survival. Under some stimuli, including growth factors,
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hormones, and stressors, AKT translocates into mito-

chondria and the activation of mitochondrial AKT pro-

motes mitochondrial complex V activity which improves

ATP synthesis under the dysregulation of mitochondrial

oxidative phosphorylation and inhibits apoptosis in sev-

eral types of cells [21–23]. A significant body of works

show that activation of AKT promotes cell survival in

multiple in vitro and in vivo models where neuronal

death is seen, including TBI [24, 25]. The great accumu-

lation of AKT on mitochondria shortly after injury sug-

gested AKT activation might play a role in TBI. The

mechanisms for mitochondrial accumulation of AKT

have not been thoroughly investigated. Stimulation of a

variety of cell types with insulin-like growth factor-1

(IGF-1), insulin, or stress (induced by heat shock), in-

duces translocation of AKT to the mitochondria within

only several minutes of stimulation, causing increases of

nearly 8 to 12 folds, and the mitochondrial AKT is

found to reside in the matrix and the inner and outer

membranes [23]. Although not in the nervous system,

AKT overexpression by a mitochondria targeted consti-

tutively active AKT via adenoviral vector inhibits efflux

of cyt c and AIF from mitochondria to cytosol and par-

tially prevents loss of mitochondria cross membrane

electrochemical gradient, showing anti-apoptosis effect

[22]. As a large body of studies have revealed the early

and sustained increase in the expression of IGF-1 and

heat shock protein in brain following traumatic injury

[26, 27], a similar mechanism involved in IGF-1 or heat

shock protein induced mitochondrial AKT accumulation

might also be triggered by TBI. The cytoplasmic AKT is

activated when phosphorylated by G-protein βγ subunits

of plasma membrane CB1 receptor [28]. The presence of

AKT in the intermembrane space, inner membrane,

outer membrane and matrix implies that it can connect

the mitochondrial CB1 and be phosphorylated.

The F1 portion of complex V anchors on the inner

membrane and protrudes into the matrix [29] and the β-

subunit of F1 portion which is the catalytic site for ATP

synthesis is one of the mitochondrial AKT’s substrates

[23]. Mitochondrial activation of AKT increases complex

V activity by 24 % in normal myocardium in vivo [21].

Through increasing complex V activity, the TBI triggered

accumulation and mtCB1 induced activation of AKT in

neuronal mitochondria might improve the coupling of

the electron transport chain and oxidative phosphoryl-

ation as indicated by the higher ratio of ATP rise to oxy-

gen consumption increase in this study.

The upregulated complex V activity might play an

indirect anti-apoptosis role because of the subsequently

increased energy supply. However the net supply of ATP

was still decreased following mtCB1 activation and the

anti-apoptosis effect of mtCB1 activation might not to-

tally depend on the improved energy supply. A number

of downstream targets of cytoplasmic AKT, such as

CREB, FoxO transcription factors and GSK3β, have also

been found on mitochondria [23, 30–32] and some of

them have been proved to modulate apoptosis through a

mitochondrial way [30]. A deeper investigation should

be necessary for determining the downstream mecha-

nisms of the mtCB1/AKT modulated neuronal apoptosis

following TBI.

Totally, these data suggest a dual role the activation of

mtCB1 receptors might play in TBI. The cAMP/PKA/

complex I inhibition aggravates metabolic defects, en-

ergy insufficiency as well as neuronal apoptosis but the

coactivation of AKT/complex V mitigates energy insuffi-

ciency and neuronal apoptosis. The discovery that mito-

chondrial CB1 signaling is involved in metabolic defects

and neuronal apoptosis following TBI further extends

the range of mechanisms through which endocannabi-

noid signaling protect brain from TBI and would

possibly add new pharmacological targets for the thera-

peutic exploitation in endocannabinoid system.

Methods

Animals and TBI procedure

Experimental animal was C57BL/6 J mouse, wild-type

(CB1+/+) afforded by animal experimental center of

Zhejiang Chinese Medicine University and homozy-

gous CB1 knockout mice (CB1−/−) [33]. The use and

care of animals employed in our models were ap-

proved by the Animal Care and Use Committee of

Zhejiang Chinese Medicine University, in accordance

with all relevant laws of china. Adult male CB1−/−

and CB1+/+ littermates (10–16 weeks) were housed

individually with an inverse 12/12 h light/dark cycle

for at least 2 weeks before experiment. Mice (n = 5 per

group) were suffered to TBI using a controlled cortical im-

pact (CCI) device (VCU Biomedical Engineering Facility,

Richmond, Virginia, USA) after anesthetized with isoflur-

ane evaporated in a gas mixture containing 70 % N2O and

30 % O2. Briefly, a craniotomy of 5-mm diameter was per-

formed over the right parietal cortex which centered

around 2.0 mm posterior to bregma and 2.0 mm lateral to

the midline. Injury was performed using a 3.0 mm

rounded metal tip that was aimed vertically to the brain

surface. The metal tip hit the brain at a speed of 4.5 m/s

resulting a deformation depth of 2.0 mm. Sham injured

mice underwent identical anesthesia and craniotomy pro-

cedure without CCI injury. Mice were placed for 2 h in an

incubator heated to 33 °C and at a humidity of 35 % to re-

cover in their individual cages.

Cell culture and injury procedure

Primary hippocampal neuron cultures were prepared

from 14-day wild type CB1+/+ and CB1−/− C57BL/6 J

mouse embryos as previously described and injured
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using an established in vitro model for TBI as de-

scribed [34, 35]. The purity of cultured neurons was

proved by immunofluorescence with antibody targeted

to GFAP or IBA-1. Cells were suffered to severe in-

jury and the control wells were contained in the same

FlexPlates as injured wells, and thus underwent the

same manipulations, except not received the deform-

ation of the silastic membrane.

Synthesis of HU210-biotin and drug administration

The cell-impermeable biotinylated version of the lipo-

philic CB1 receptor agonist HU210 (HU210-biotin)

displaying a comparable affinity for CB1 receptors to

that of HU210 was used as plasma membrane CB1

receptor activator and was synthesized as previous de-

scribed [7]. Purity (elemental analysis) >95 %. Blood

brain barrier permeability of HU-210 in mouse (intra-

peritoneally, 0.1 mg per kilogram) was proved by

Nguyen VH [36]. Cell-impermeable antagonist hemo-

pressin, cell-permeable lipophilic antagonist AM251

and agonist THC were used in this experiment [7].

Intraperitoneal use of THC (5 mg per kilogram),

hemopressin (0.5 mg per kilogram) and AM251

(0.5 mg per kilogram) to rodent were based on previ-

ous studies [7, 37]. Injections were made in a volume

of 2 ml/kg body weight and the first dose adminis-

trated 30 min after injury and repeated 12 h after in-

jury. Drugs were added directly into cultured neurons

to reach the concentrations (5 μM hemopressin,

0.5 μM of HU210, 0.5 μM HU-biot, 10 μM THC and

5 μM AM251) 30 min after injury and repeated 12 h

later to keep the same concentrations without appar-

ent cellular toxicity. In purified mitochondria, Drugs

were added right after extraction and 30 min before

testing with the concentration same to neuron. H89

(1 mM), rotenone (2.5 μM), forskolin (1.5 mM), val-

proic acid (VPA, 1.0 mM, 2.0 mM and 4.0 mM) and

API-2 (1.0 mM) were also directly added into purified

mitochondria. Pharmaceutical chemicals were pur-

chased from Sigma-Aldrich.

Cell fraction isolation

Cortex from the ipsilateral injury site was rapidly excised

and cut into small pieces. Tissues or cells were homoge-

nized in isolation buffer (1 mM EDTA and DNAase and

protease inhibitor cocktail, PH7.4). The homogenate was

centrifuged at 1 000 g for 5 min. The supernatant was

strained through gauze and recentrifuged at 7 000 g for

10 min. The resulting pellets were resuspended in ice

cold isolation buffer for a new series of centrifugation

(1 000 and 7 000 g) for mitochondrial purification.

Then the supernatant was collected for centrifugation

for membrane fraction collection. A discontinues su-

crose gradient (1.0–2.5 M) was used to layer the

plasma membrane fractions. The crude mitochondrial

pellets were resuspended in ficoll medium and centri-

fuged for further purification. Protein concentration

was determined by the BCA assay. The mitochondria

were made up to a concentration of 50 mg protein/

ml in the buffer. The lysosome, cytosol and endoplas-

mic reticulum (ER) contaminations in purified mito-

chondria were investigated using antibodies against

LAMP1, GAPDH and calreticulin respectively. Few

lysosome, cytosol and ER contaminations were seen

in the purified mitochondria (data were not shown).

Western blots

All samples were supplemented with proteases inhibitor

(Roche) then diluted in sample buffer. Samples were

supplemented with 2 % beta-mercaptoethanol and

50 mM DTT and boiled for about 6 min. Proteins were

separated on tris-glycine 4–15 % acrylamide gels and

transferred to PVDF membranes. Membranes were

soaked in 5 % milk in PBS-Tween 20 (0.05–0.15 %).

Mitochondrial and plasma membrane proteins were de-

tected using rabbit anti-Tom-20 polyclonal antibody

(Santa Cruz, 1:200) and rabbit anti-cadherin polyclonal

antibody (Santa Cruz, 1:200). Lysosome, cytosol and

endoplasmic reticulum(ER) contaminations were investi-

gated using goat anti-LAMP1 polyclonal antibody (Santa

Cruz, 1:200), goat anti-GAPDH polyclonal antibody

(Santa Cruz, 1:200) and rabbit anti-calreticulin poly-

clonal antibody (Invitrogen, 1:300) respectively. The

presence of the CB1 receptors in mitochondria and

plasma membrane fractions was analyzed using rabbit

anti-CB1 polyclonal antibody directed against the C

terminus of the receptor (Cayman, 1:300). The mito-

chondrial total AKT, pS473-AKT and pT308-AKT were

tested with rabbit anti-AKT polyclonal antibody (Santa

Cruz, 1:300), rabbit anti-pS473-AKT polyclonal antibody

(Santa Cruz, 1:300), rabbit anti-pT308-AKT polyclonal

antibody (Santa Cruz, 1:300) respectively. AIF and cyt c

were analyzed with rabbit anti-AIF polyclonal antibody

(Santa Cruz, 1:500) and goat anti-cyt c polyclonal anti-

body (Santa Cruz, 1:1000). GFAP and IBA-1 were de-

tected with rabbit anti-GFAP polyclonal antibody (Santa

Cruz, 1:500) and rabbit anti- IBA-1 polyclonal antibody

(Santa Cruz, 1:500). Immunoreactivity was detected by

incubation with secondary HRP-coupled antibody for

1 h at room temperature followed by the ECL plus re-

agent (Santa Cruz). The optical densities of the bands

were calculated using a MiVnt image analysis system

(Bio-Rad, Carlsbad, CA, USA).

Microdialysis

Microdialysis study was initiated at 22 h post injury and

maintained for 6 h. A microdialysis catheter (CMA 12,

CMA Microdialysis, Sweden) was introduced through a
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guide cannula secured in a dedicated and distinct

burr hole placed 2 mm anteriorly to the craniectomy.

Perfusion was then initiated at 1 μL/min with CNS

perfusion fluid (CMA Microdialysis, Sweden) and

microdialysis samples collected every hour. Concen-

trations of glucose, pyruvate and lactate were mea-

sured using high performance liquid chromatography

(CMA 600, CMA Microdialysis, Sweden) and aver-

aged hourly for statistical analysis.

Measurement of extracellular lactate and pyruvate

concentrations

Twenty-four hours after injury, the growth medium in

six-well FlexPlates were collected, cells removed by cen-

trifugation at 1200 g for 5 min, then the lactate and

pyruvate concentrations were determined enzymatically

using Biovision assay kits according to instructions.

Oxygen consumption assay

Oxygen consumption was monitored at 30 °C in a

thermostatically controlled glass chamber equipped with

a clark oxygen electrode (Hansatech Instruments,

Norfolk, England). Mitochondria purified from aliquots of

cells were suspended in 1 mL of the respiration buffer

(75 mM mannitol, 25 mM sucrose, 10 mM KCl, 10 mM

Tris–HCl, 450 mM EDTA) in the chamber. Intact cells

were transferred directly in the chamber. Respiratory sub-

strates (10 mM pyruvate and 5 mM malate) were added

directly to the chamber. A coupled respiratory state was

obtained by adding 2 mM ADP.

Assay for ATP

ATP assay kits (Promega) were used 24 h after injury.

Aliquots of isolated mitochondria were digested with

2.5 % TCA and then neutralized with tris-acetate.

The luminescence was measured using synergy HT

multi-detection microplate reader. A 2 s delay time

after 100 μL rLuciferase/Luciferin reagent injection

and a 10s RLU signal integration time were used ac-

cording to the manual.

TUNEL staining

Consecutive coronal sections were cut from posterior

bregma-1 mm to bregma-2.5 mm with 150 μm intervals.

The thickness of every section was 8 μm and a total

number of 10 sections in each brain were collected for

terminal deoxynucleotidyl transferase-mediated dUTP-

biotin nick end labeling (TUNEL) staining. TUNEL

staining was performed using an In Situ Cell Death De-

tection Kit (Roche Diagnostics, Mannheim, Germany) to

detect in situ DNA fragmentation. DAPI staining was

performed according to routine laboratory methods. The

images were viewed on an EVOS-fl digital inverted

fluorescent microscopy.

In each section, six non-overlapped vision fields were

randomly selected from regions surrounding the primary

contused site. The apoptotic index of each section was

calculated by the mean number of TUNEL/DAPI double

positive nuclei in the six views and the apoptotic index

for each animal was determined by the final average per-

centage of double positive cells of the 10 sections.

Cell apoptosis was assessed in cultured neurons ac-

cording to previous study [38]. Neurons in six contigu-

ous images were counted and averaged per well. All

these images were taken from the center portion of the

well, as this region was previously shown to receive

equal impact from the cell injury controller [35]. All cell

counting was performed blind.

Detection of cyt c and AIF release

Isolated neuronal mitochondria were incubated at 30 °C

for 50–80 min in 100 μL of KCl medium(125 mM KCl,

2 mM K2HPO4, 20 mM HEPES) supplemented with

5 mM succinate and 4 mM MgCl2. Mitochondrial sus-

pensions were centrifuged at 13 000 g for 6 min at 4 °C

at the end of the incubation period. Supernatants were

stored with Halt Protease Inhibitor Mixture® (Pierce)

at −80 °C. Pellets were also stored at −80 °C then re-

suspended in 100 μL of KCl medium containing 1 %

triton X-100 and Halt Protease Inhibitor Mixture®

prior to gel loading. Proteins retained in the mito-

chondrial pellets or released into the supernatants

were separated by SDS-PAGE. AIF and cyt c were

then detected by immunoblot.

Cyclic AMP, PKA and AKT activity assay

Cyclic AMP level, PKA and AKT activity were assayed

on isolated mitochondria using the Direct Correlate-EIA

cAMP kit (Assay Designs Inc) and an ELISA kit (Enzo

Life Science) respectively.

NADH-ubiquinone oxidoreductase (complex I) activity

assay

We followed the reaction of NADH oxidation into NAD+

by complex I on isolated mitochondria as previously

described [39].

Oxidative phosphorylation Complex V activity assay

Equal amount of mitochondrial protein was added to

800 μL pre-warmed distilled water and 200 μL pre-

warmed reaction buffer containing 50 mM Tris–HCl,

1 mM NADH, 5 mg/mL BSA, 20 mM MgCl2, 50 mM

KCl, 15 μM carbonyl cyanide m-chlorophenyl hydra-

zone, 10 mM phosphoenol pyruvate, 5 μM antimycin

and 4U of lactate dehydrogenase/pyruvate kinase at 37 °C.

The activity was measured by the absorbance at 340 nm

for 3 min. Twelve μM oligomycin was added to the reac-

tion mixture to determine the oligomycin-sensitive
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complex V activity. The abundance of complex V subunits

was analyzed with complex V immunocapture Kit

(Mitosciences).

Statistical analyses

All graphs and statistical analyses were performed using

IBM SPSS software (version 21.0). Results are expressed

as means of independent data points ± SE. Data were

analyzed using a paired or unpaired Student’s t-test,

one-way ANOVA (followed by Newman-Keuls post

hoctest), or two-way ANOVA (followed by Bonferroni’s

post hoctest).

Acknowledgments

Not applicable.

Funding

This work was supported by Zhejiang provincial natural science foundation

(LY16H090014) and Zhejiang provincial medical health and science and

technology project foundation (2016KYB213).

Availability of data and materials

We do not have any special data or materials to share with readers.

Authors’ contributions

ZX and JX designed the experiments and prepared the models. XAL, QD and

YQG prepared the gene knockout models and cultured neurons and carried

out the experiments. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interest.

Consent for publication

Not applicable.

Ethics approval and consent to participate

The use and care of animals employed in our model was approved by the

Animal Care and Use Committee of Zhejiang Chinese Medicine University, in

accordance with all relevant laws of China.

Author details
1Department of Neurosurgery, First affiliated Hospital of Zhejiang Chinese

Medicine University, 54 Youdian Lane, Hangzhou 310006, China.
2Department of Surgery, First affiliated Hospital of Zhejiang Chinese

Medicine University, 54 Youdian Lane, Hangzhou 310006, China. 3Central

laboratory, First affiliated Hospital of Zhejiang Chinese Medicine University,

54 Youdian Lane, Hangzhou 310006, China. 4Department of Neurosurgery,

Huzhou Central Hospital, 198 Hongqi Lane, Huzhou 313003, China.

Received: 26 May 2016 Accepted: 29 July 2016

References

1. Wright MJ, McArthur DL, Alger JR, Van Horn J, Irimia A, Filippou M, Glenn

TC, Hovda DA, Vespa P. Early metabolic crisis-related brain atrophy and

cognition in traumatic brain injury. Brain Imaging Behav. 2013;7(3):307–15.

2. Xiong Y, Gu Q, Peterson PL, Muizelaar JP, Lee CP. Mitochondrial dysfunction

and calcium perturbation induced by traumatic brain injury. J Neurotrauma.

1997;14(1):23–34.

3. Keightley ML, Sinopoli KJ, Davis KD, Mikulis DJ, Wennberg R, Tartaglia MC,

Chen JK, Tator CH. Is there evidence for neurodegenerative change

following traumatic brain injury in children and youth? A scoping review.

Front Hum Neurosci. 2014;8:139.

4. Robertson CL. Mitochondrial dysfunction contributes to cell death following

traumatic brain injury in adult and immature animals. J Bioenerg Biomembr.

2004;36(4):363–8.

5. Panikashvili D, Simeonidou C, Ben-Shabat S, Hanus L, Breuer A, Mechoulam

R, Shohami E. An endogenous cannabinoid (2-AG) is neuroprotective after

brain injury. Nature. 2001;413(6855):527–31.

6. Nagayama T, Sinor AD, Simon RP, Chen J, Graham SH, Jin K, Greenberg DA.

Cannabinoids and neuroprotection in global and focal cerebral ischemia

and in neuronal cultures. J Neurosci. 1999;19(8):2987–95.

7. Bénard G, Massa F, Puente N, Lourenço J, Bellocchio L. Mitochondrial CB1
receptors regulate neuronal energy metabolism. Nat Neurosci. 2012;15(4):

558–64.

8. Wender R, Brown AM, Fern R, Swanson RA, Farrell K, Ransom BR. Astrocytic

glycogen influences axon function and survival during glucose deprivation

in central white matter. J Neurosci. 2000;20(18):6804–10.

9. Carre E, Ogier M, Boret H, Montcriol A, Bourdon L, Jean-Jacques R.

Metabolic Crisis in Severely Head-Injured Patients: Is Ischemia Just the Tip of

the Iceberg? Front Neurol. 2013;4:146.

10. Rozenfeld R, Devi LA. Regulation of CB1 cannabinoid receptor trafficking by

the adaptor protein AP-3. FASEB J. 2008;22(7):2311–22.

11. Cheng G, Kong RH, Zhang LM, Zhang JN. Mitochondria in traumatic brain

injury and mitochondrial-targeted multipotential therapeutic strategies. Br J

Pharmacol. 2012;167(4):699–719.

12. De Sarno P, Li X, Jope RS. Regulation of Akt and glycogen synthase kinase-3

beta phosphorylation by sodium valproate and lithium.

Neuropharmacology. 2002;43(7):1158–64.

13. Golech SA, McCarron RM, Chen Y, Bembry J, Lenz F, Mechoulam R, Shohami

E, Spatz M. Human brain endothelium: coexpression and function of

vanilloid and endocannabinoid receptors. Brain Res Mol Brain Res. 2004;

132(1):87–92.

14. Sheng WS, Hu S, Min X, Cabral GA, Lokensgard JR, Peterson PK. Synthetic

cannabinoid WIN55, 212–2 inhibits generation of inflammatory mediators

by IL-1beta-stimulated humana astrocytes. Glia. 2005;49(2):211–9.

15. Cabral GA, Marciano-Cabral F. Cannabinoid receptors in microglia of the

central nervous system: immune functional relevance. J Leukoc Biol. 2005;

78(6):1192–7.

16. Shohami E, Cohen-Yeshurun A, Magid L, Algali M, Mechoulam R.

Endocannabinoids and traumatic brain injury. Br J Pharmacol. 2011;

163(7):1402–10.

17. Maresz K, Carrier EJ, Ponomarev ED, Hillard CJ, Dittel BN. Modulation of the

cannabinoid CB2 receptor in microglial cells in response to inflammatory

stimuli. J Neurochem. 2005;95(2):437–45.

18. Pacher P, Haskó G. Endocannabinoids and cannabinoid receptors in

ischaemia-reperfusion injury and preconditioning. Br J Pharmacol. 2008;

153(2):252–62.

19. Console-Bram L, Marcu J, Abood ME. Cannabinoid receptors: nomenclature

and pharmacological principles. Prog Neuropsychopharmacol Biol

Psychiatry. 2012;38(1):4–15.

20. Robertson CL, Saraswati M, Fiskum G. Mitochondrial dysfunction early after

traumatic brain injury in immature rats. J Neurochem. 2007;101(5):1248–57.

21. Yang JY, Deng W, Chen Y, Fan W, Baldwin KM, Jope RS, Wallace DC, Wang

PH. Impaired translocation and activation of mitochondrial Akt1 mitigated

mitochondrial oxidative phosphorylation Complex V activity in diabetic

myocardium. J Mol Cell Cardiol. 2013;59:167–75.

22. Su CC, Yang JY, Leu HB, Chen Y, Wang PH. Mitochondrial Akt-regulated

mitochondrial apoptosis signaling in cardiac muscle cells. Am J Physiol

Heart Circ Physiol. 2012;302(3):H716–23.

23. Bijur GN, Jope RS. Rapid accumulation of Akt in mitochondria following

phosphatidylinositol 3-kinase activation. J Neurochem. 2003;87(6):1427–35.

24. Farook JM, Shields J, Tawfik A, Markand S, Sen T, Smith SB, Brann D,

Dhandapani KM, Sen N. GADD34 induces cell death through inactivation of

Akt following traumatic brain injury. Cell Death Dis. 2013;4:e754.

25. Noshita N, Lewén A, Sugawara T, Chan PH. Akt phosphorylation and

neuronal survival after traumatic brain injury in mice. Neurobiol Dis. 2002;

9(3):294–304.

26. Madathil SK, Evans HN, Saatman KE. Temporal and regional changes in IGF-

1/IGF-1R signaling in the mouse brain after traumatic brain injury. J

Neurotrauma. 2010;27(1):95–107.

27. Dutcher SA, Underwood BD, Walker PD, Diaz FG, Michael DB. Patterns of

heat-shock protein 70 biosynthesis following human traumatic brain injury.

J Neurotrauma. 1998;15(6):411–20.

28. Gómez del Pulgar T, Velasco G, Guzmán M. The CB1 cannabinoid

receptor is coupled to the activation of protein kinase B/Akt. Biochem

J. 2000;347(Pt 2):369–73.

Xu et al. Molecular Brain  (2016) 9:75 Page 13 of 14



29. Pedersen PL. Transport ATPases into the year 2008: a brief overview related

to types, structures, functions and roles in health and disease. J Bioenerg

Biomembr. 2007;39(5–6):349–55.

30. Cammarota M, Paratcha G, Bevilaqua LR. Levi de Stein M, Lopez M,

Pellegrino de Iraldi A, Izquierdo I, Medina JH. Cyclic AMP-responsive

element binding protein in brain mitochondria. J Neurochem. 1999;72(6):

2272–7.

31. Caballero-Caballero A, Engel T, Martinez-Villarreal J, Sanz-Rodriguez A,

Chang P, Dunleavy M, Mooney CM, Jimenez-Mateos EM, Schindler CK,

Henshall DC. Mitochondrial localization of the forkhead box class O

transcription factor FOXO3a in brain. J Neurochem. 2013;124(6):749–56.

32. Hoshi M, Takashima A, Noguchi K, Murayama M, Sato M, Kondo S, Saitoh Y,

Ishiguro K, Hoshino T, Imahori K. Regulation of mitochondrial pyruvate

dehydrogenase activity by tau protein kinase I/glycogen synthase kinase

3beta in brain. Proc Natl Acad Sci U S A. 1996;93(7):2719–23.

33. Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG,

Hermann H, Tang J, Hofmann C, Zieglgänsberger W, Di Marzo V, Lutz B. The

endogenous cannabinoid system controls extinction of aversive memories.

Nature. 2002;418(6897):530–4.

34. Tong Slemmer JE, Matser EJ, De Zeeuw CI, Weber JT. Repeated mild injury

causes cumulative damage to hippocampal cells. Brain. 2002;125(Pt 12):

2699–709.

35. Ellis EF, McKinney JS, Willoughby KA, Liang S, Povlishock JT. A new model

for rapid stretch-induced injury of cells in culture: characterization of the

model using astrocytes. J Neurotrauma. 1995;12(3):325–39.

36. Nguyen VH, Wang H, Verdurand M, Zavitsanou K. Differential treatment

regimen-related effects of HU210 on CB (1) and D (2)-like receptor

functionality in the rat basal ganglia. Pharmacology. 2012;89(1–2):64–73.

37. Heimann AS, Gomes I, Dale CS, Pagano RL, Gupta A, de Souza LL, Luchessi

AD, Castro LM, Giorgi R, Rioli V, Ferro ES, Devi LA. Hemopressin is an inverse

agonist of CB1 cannabinoid receptors. Proc Natl Acad Sci U S A. 2007;

104(51):20588–93.

38. Slemmer JE, Zhu C, Landshamer S, Trabold R, Grohm J, Ardeshiri A, Wagner

E, Sweeney MI, Blomgren K, Culmsee C, Weber JT, Plesnila N. Causal role of

apoptosis-inducing factor for neuronal cell death following traumatic brain

injury. Am J Pathol. 2008;173(6):1795–805.

39. Tieu K, Perier C, Caspersen C, Teismann P, Wu D-C, Yan S-D, Naini A, Vila M,

Jackson-Lewis V, Ramasamy R, Przedborski S. D-β-Hydroxybutyrate rescues

mitochondrial respiration and mitigates features of Parkinson disease. J Clin

Invest. 2003;112(6):892–901.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Xu et al. Molecular Brain  (2016) 9:75 Page 14 of 14


