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Introduction
Acne vulgaris is the most common human skin disease, affecting 
quality of life of millions worldwide. In spite of heroic basic and 
applied research efforts, we still lack indisputably curative anti-
acne agents, which target multiple pathogenetic steps of acne 
(sebum overproduction, unwanted sebocyte proliferation, inflam-
mation) and, moreover, which possess favorable side effect pro-
files (1, 2). Investigations over the last two decades have confirmed 
unambiguously that the human body expresses such receptors, 
which are able to specifically bind and recognize characteristic 
terpene-phenol compounds of the infamous plant Cannabis sativa, 
collectively referred to as phytocannabinoids. These receptors, 
their endogenous ligands (the endocannabinoids [eCBs]), and the 
enzymes involved in the synthesis and degradation of the eCBs 
collectively constitute the eCB system (ECS), a complex intercel-
lular signaling network markedly involved in the regulation of var-
ious physiological processes (3–6).

Investigation of the cutaneous cannabinoid system seems to be 
a promising choice when searching for novel therapeutic possibilities 
(7, 8). Indeed, we have shown previously that the skin ECS regulates 
cutaneous cell growth and differentiation (9, 10), and it reportedly 
exerts antiinflammatory effects (11). Of further importance, we have 

also demonstrated that the ECS plays a key role in the regulation of 
sebum production (12). According to our recent findings, prototypic 
eCBs, such as N-arachidonoyl ethanolamide (anandamide [AEA]) 
and 2-arachidonoylglycerol, are constitutively produced in human 
sebaceous glands. Moreover, using human immortalized SZ95 sebo-
cytes, we have also demonstrated that these locally produced eCBs 
(acting through a CB2 cannabinoid receptor→ERK1/2 MAPK→ 

PPAR pathway) induce terminal differentiation of these cells, which 
is characterized by increased neutral lipid (sebum) production of 
the sebocytes (12). These findings confirmed unambiguously that 
human sebocytes have a functionally active ECS; yet, we did not 
possess data on the potential effect(s) of plant-derived cannabinoids.

(-)-Cannabidiol (CBD) is the most studied nonpsychotropic 
phytocannabinoid (13–15). It has already been applied in clinical 
practice without any significant side effects (Sativex) (16), and 
numerous ongoing phase II and III trials intend to explore its fur-
ther therapeutic potential (17). Hence, within the confines of the 
current study, we intended to reveal the biological actions of CBD 
on the human sebaceous gland. Since we lack adequate animal 
models (18), we used human immortalized SZ95 sebocytes, the 
best available cellular system (19), and the full-thickness human 
skin organ culture (hSOC) technique (20).
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itatively excessive and abnormal lipid production induced by 
acne-promoting stimuli.

CBD decreases proliferation, but not the viability, of human 

sebocytes both in vitro and ex vivo. Besides the above lipostatic 
action, another desired effect of a proper anti-acne agent would 
be to inhibit the unwanted growth of sebocytes (2, 27, 28). Of great 
importance, proliferation of SZ95 sebocytes was significantly 
reduced in the presence of CBD (1–10 μM) (Figure 2A). It should 
be noted, however, that CBD did not suppress the cell count below 
the “starting” number (measured at day 1), arguing for a “pure” 
antiproliferative effect. Indeed, the lack of its effects on the count 
of viable cells was further verified by showing that these concen-
trations of CBD did not decrease cellular viability or induce either 
apoptosis or necrosis of SZ95 sebocytes (Figure 2, B and C). Nota-
bly, administration of 50 μM CBD evoked apoptosis-driven cyto-
toxicity and, hence, led to decreased lipogenesis (Supplemental 
Figure 2, A–C). Likewise, elongated application of 10 μM CBD 
(6-day treatments) also decreased cell number and lipogenesis 
(Supplemental Figure 2, D and E).

Clinically, the key question is whether the above in vitro 
observations could be translated into significant sebostatic (i.e., 
lipostatic and antiproliferative) effects of CBD on human seba-
ceous glands in situ. To explore this on the preclinical level, the 
full-thickness hSOC technique (20) was used. These hSOC 
assays, which mimic the human sebaceous gland function in vivo 
as closely as this is currently possible on the ex vivo level, clearly 
demonstrated that application of CBD completely prevented the 
lipogenic action of AEA in situ and, in line with our long-term in 
vitro observations (Supplemental Figure 2E), decreased basal 
lipogenesis as well (Figure 2, D–H). Likewise, CBD markedly sup-

(1–10 μM) on the lipogenesis of SZ95 sebocytes. Although eCBs 
are known to show intense lipogenic actions via the metabotropic 
CB2 receptors (12), neither semiquantitative Oil Red O nor quan-
titative Nile Red staining indicated changes in the basal neutral 
(sebaceous) lipid synthesis of SZ95 sebocytes following 24-hour 
CBD treatment (Figure 1, A–C) (or 48-hour CBD treatment; data 
not shown). Intriguingly, however, CBD markedly inhibited the 
lipogenic action of the prototypic eCB, AEA, in a dose-dependent 
manner (1–10 μM; Figure 1, C–E).

We also tested its effect on actions of other lipogenic sub-
stances, which were shown previously to act through different, 
ECS-independent signal transduction mechanisms. Indeed, CBD 
effectively inhibited lipid synthesis induced by either arachidonic 
acid (AA) (21) or the combination of linoleic acid and testosterone 
(LA-T) (ref. 22 and Figure 1F), indicating that the effect of CBD is 
not “ECS specific” but a “universal” lipostatic action.

Since cannabinoids have been very often shown to exert 
“biphasic” effects (i.e., opposing physiological actions at nM vs. 
μM concentrations) (23), we also tested the effects of lower (1–100 
nM) CBD concentrations; notably, they did not influence either 
basal or AA-induced lipid synthesis of the sebocytes (Supplemen-
tal Figure 1; supplemental material available online with this arti-
cle; doi:10.1172/JCI64628DS1).

We also investigated the effects of CBD on the lipidome of 
SZ95 sebocytes under in vitro conditions that mimicked “acne-
like” circumstances (the latter was achieved by using a key “pro-
acne” inflammatory mediator, AA) (1, 2, 21, 24–26). Importantly, 
CBD almost completely normalized the AA-enhanced “patho-
logical” lipogenesis of SZ95 sebocytes (Figure 1G). This suggests 
that CBD may primarily normalize both quantitatively and qual-

Figure 1. CBD prevents excessive lipogenesis 

induced by “pro-acne agents” in human SZ95 

sebocytes. (A, B, D, and E) Semiquantitative 

determination of lipid synthesis for (A) control, 

(B) 10 μM CBD, (D) 30 μM AEA, and (E) 30 μM 

AEA plus 10 μM CBD (sebum droplets: Oil Red O 

staining, red; nuclei: hematoxylin, blue). Scale 

bars: 10 μm. (C) Quantitative determination of 

lipid synthesis (Nile Red staining). **P < 0.01, 

***P < 0.001 compared with the AEA-treated 

group. PL, polar lipids; NL, neutral lipids. (F) 

Neutral lipid synthesis (Nile Red staining). 

***P < 0.001 compared with the respective 

AA- or LA-T–treated group. (C and F) Data are 

expressed as the percentage of the vehicle con-

trol (mean ± SEM of 4 independent determina-

tions). The solid line indicates 100%. Two addi-

tional experiments yielded similar results. (G) 

Analysis of the sebaceous lipidome. Sebaceous 

lipid classes were analyzed by HPLC-ToF/MS in 

sebocytes. CH, free cholesterol; CE, cholesteryl 

esters; WE, wax esters; DG, diacyl glycerols; TG, 

triacylglycerols; SQ, squalene; FFA, free fatty 

acids. Results are expressed as the percentage 

of the vehicle control (mean ± SD of 3  

independent determinations). The solid line 

indicates 100%. Two additional experiments 

yielded similar results. *P < 0.05,  

**P < 0.01, ***P < 0.001.
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lipostatic effects of CBD. As expected, neither CB1- nor CB2-spe-
cific antagonists (AM251 and AM630) were able to antagonize the 
lipid synthesis-inhibitory action of CBD (Supplemental Figure 3); 
hence, alternative options had to be considered.

First, we studied the effects of CBD on the ionic currents of 
SZ95 sebocytes. Using whole-cell patch-clamp configurations, 
membrane currents were elicited by voltage ramp protocols (Fig-
ure 4, A and B) and then normalized to cell membrane capacitance 
at two different potentials, i.e., at –90 and +90 mV (Figure 4C). 
CBD (10 μM) induced a mostly outwardly rectifying current and a 
positive shift in the reversal potential, arguing for the activation of 
certain cation channels upon CBD application.

It is well known that various cannabinoids can modulate the 
activity of certain transient receptor potential (TRP) channels, 
collectively referred to as “ionotropic cannabinoid receptors” 
(32–37). Moreover, we have shown recently that activation of TRP 
vanilloid-1 (TRPV1) on SZ95 sebocytes by capsaicin also exerts 
potent lipostatic actions (38). Therefore, we first systematically 
explored these candidate “CBD targets.”

We found that SZ95 sebocytes express TRPV1, TRPV2, and 
TRPV4 both at the mRNA and protein levels (Supplemental Figure 
4, A–C). Among these TRP channels, TRPV4 showed the highest 
mRNA levels by far (expression of TRPA1 and TRPM8 was below 
the detection limit; data not shown).

Since the 3 identified TRPs are nonselective cation channels 
that are most permeable to Ca2+ (39), we studied the effects of CBD 
on the calcium homeostasis of the sebocytes. Using a fluorescent 

pressed the expression of the proliferation marker MKI67 (Figure 
2I). This suggests that CBD may also operate as a potent sebostatic 
agent in vivo when tested in appropriate clinical trials.

CBD exerts universal antiinflammatory actions. We additionally 
found that CBD also prevented the “pro-acne” LA-T combination 
from elevating the expression of TNFA (Figure 3A), a key cytokine in 
the pathogenesis of acne vulgaris (2, 24–30). These data suggested 
that CBD may exert antiinflammatory actions on human sebocytes 
(as had already been demonstrated for CBD in several other exper-
imental models, such as diabetes, rheumatoid arthritis, etc.) (31). 
Therefore, in order to confirm the putative universal antiinflamma-
tory action of the CBD on human sebocytes, we next assessed its 
effects by modeling both Gram-negative infections (applying the 
TLR4 activator LPS) and Gram-positive infections (using the TLR2 
activator lipoteichoic acid [LTA]). We found that CBD completely 
prevented the above treatments from elevating TNFA expression 
(Figure 3). Moreover, CBD also normalized LPS-induced IL1B and 
IL6 expression (Figure 3B) (expression of these 2 cytokines was 
found not to be modulated by 24-hour LA-T or LTA treatment; data 
not shown). Taken together, these results strongly suggest that 
CBD’s universal sebostatic action is accompanied by substantial 
antiinflammatory effects, which would be very much desired in the 
clinical treatment of acne vulgaris (1, 2, 24–30).

Sebostatic (i.e., lipostatic and antiproliferative), but not anti-

inflammatory, actions of CBD are mediated by the activation of 

transient receptor potential vanilloid-4 ion channels. Next, we dis-
sected the molecular mechanism(s) that underlie the remarkable 

Figure 2. CBD exerts sebostatic effects in vitro and under “in vivo–like” circumstances. (A) CyQUANT proliferation assay after 72-hour treatments.  

*P < 0.05, ***P < 0.001 compared with the 72-hour vehicle control. The solid line indicates the level of the 24-hour vehicle control. (B) MTT assay. Viability 

of sebocytes following 48-hour treatments. (C) Cell death [DilC
1
(5) and SYTOX Green double labeling] assays after 24-hour treatments. (A–C) Results are 

expressed as the percentage of the vehicle control (mean ± SEM of 4 independent determinations). The solid line indicates 100%.Two additional exper-

iments yielded similar results. (D–G) hSOC of (D) control, (E) 10 μM CBD, (F) 30 μM AEA, and (G) 30 μM AEA plus CBD 10 μM (14 days; sebum: Oil Red O 

staining, red; nuclei: hematoxylin, blue). Scale bars: 50 μm. (H) Statistical analysis of the lipid production on 4 histological sections per group. Results are 

expressed as mean ± SEM. **P < 0.01. (I) Statistical analysis of the number of MKI67+ cells as compared with the number of DAPI+ cells on 2 histological 

sections per group (hSOC; 48 hours). **P < 0.01 compared with the vehicle control. Results are expressed as mean ± SEM.
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successful silencing of the targeted TRPVs; Supplemental Figure 8, 
A–F). We showed that neither TRPV1 nor TRPV2 silencing signifi-
cantly influenced the lipostatic action of CBD (Supplemental Fig-
ure 9, A and B). In contrast, TRPV4-specific “knockdown” was able 
to prevent this effect of CBD (Figure 5D) as well as the increase of 
[Ca2+]

IC
 (Supplemental Figure 10) and the lipid-lowering action of 

the TRPV4-specific activator GSK (Figure 5E). Collectively, these 
data unambiguously confirm that CBD activates TRPV4 and that 
this ion channel selectively mediates its lipostatic action.

Interestingly, we also showed that, similar to the lipostatic 
action, antagonism of TRPV4 was able to significantly prevent the 
antiproliferative effect of CBD (Figure 6A). However, quite surpris-
ingly, antiinflammatory actions of CBD were not affected by the 
antagonist (Figure 6B); these latter findings suggested that these 
antiinflammatory actions might be a TRPV4-independent process.

Sebostatic action of CBD is mediated by TRPV4-dependent inter-

ference with the ERK1/2 MAPK pathway and downregulation of nuclear 

receptor interacting protein-1. To dissect the intracellular signaling 
pathways that underlie the above effects, we first investigated the 
putative participation of several kinases (i.e., PKC isoforms, PI3K, 
PKA) as well as calcineurin in mediating the lipostatic effects of CBD. 
Notably, inhibition of activities of these molecules had no effect on 
the lipostatic activity of CBD (Supplemental Figure 11, A and B).

Then, in order to identify target genes and pathways regulated 
(directly or indirectly) by CBD, genome-wide microarray analyses 
were performed on 3 independent sets of control and CBD-treated 
SZ95 sebocytes (10 μM CBD for 24 hours). Gene set enrichment 

Ca2+-imaging technique, we found that CBD significantly increased 
the intracellular calcium concentration ([Ca2+]

IC
) of SZ95 sebo-

cytes (Figure 5, A and B). This action was equally antagonized by 
(a) the decrease of the extracellular Ca2+ concentration ([Ca2+]

EC
); 

(b) the nonspecific TRP channel blocker ruthenium red; and, of 
great importance, (c) the TRPV4-specific antagonist HC067047 
(HC) (Figure 5, A and B). We have also shown that the suppression 
of [Ca2+]

EC
 or the coapplication of HC also prevented the lipostatic 

action of CBD (Figure 5C); notably, the TRPV4 antagonist alone 
did not affect basal lipid synthesis (Supplemental Figure 5).

To further confirm the functional expression of TRPV4 
on human sebocytes, the TRPV4-specific ultrapotent agonist 
GSK1016790A (GSK) was applied. The agonist evoked membrane 
currents, which were prevented by the specific TRPV4 antagonist 
HC (Supplemental Figure 6, A and B), indicating that TRPV4 chan-
nels are indeed functionally expressed in human sebocytes. More-
over, GSK mimicked both the CBD-induced [Ca2+]

IC
 elevations 

(Supplemental Figure 6, C and D) and CBD’s lipostatic actions (Fig-
ure 5C). Since the CBD-evoked lipostatic effects and the induced 
Ca2+ signals were not influenced by the TRPV1-specific antagonists, 
capsazepine (Supplemental Figure 7, A–C) or AMG 9810 (data not 
shown), these electrophysiological, Ca2+-imaging and cellular phys-
iology data collectively argued for the selective involvement of 
TRPV4 (but not of TRPV1) in mediating the effects of CBD.

To further validate this concept, knockdown of TRPV1, TRPV2, 
and TRPV4 by RNA interference (RNA

i
) was used (quantitative 

“real-time” PCR [Q-PCR] and Western blot analyses verified the 

Figure 3. CBD exerts universal antiinflammatory actions. 

(A) TNFA mRNA expression following 24-hour “pro-acne” 

lipogenic and TLR agonist treatments with or without 

CBD. *P < 0.05 compared with the corresponding CBD-free 

treatments. (B) IL1B, IL6, and TNFA mRNA expression 

following 24-hour LPS treatment with or without CBD. 

*P < 0.05, **P < 0.01, ***P < 0.001 compared with the 

corresponding CBD-free treatments. (A and B) Data are 

presented using the ΔΔCT method; GAPDH-normalized 

mRNA expression of the vehicle control was set as 1 (solid 

line). Data are expressed as mean ± SD of 3 independent 

determinations. Two additional experiments yielded 

similar results.

Figure 4. CBD induces outwardly rectifying membrane currents on human sebocytes. (A) Representative current-voltage traces of patch-clamp measure-

ment of sebocytes using conventional whole-cell configuration with or without 10 μM CBD. (B) CBD-induced differential current (i.e., CBD minus control). 

(C) Averaged current densities measured at –90 mV and +90 mV of 7 cells. Results are expressed as mean ± SEM. **P < 0.01 compared with control.
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ulated genes is summarized in 
Supplemental Figures 12 and 13, 
respectively). In line with our 
previous results, this method also 
highlighted that CBD exerted 
“anti-differentiating” effects on 
sebocytes (terms like “negative 
regulation of fat cell differenti-
ation” and “negative regulation 
of fatty acid biosynthetic pro-
cess” were found to be enriched 
among the upregulated genes).

Although these analyses fur-
ther confirmed our previous find-
ings on the complex anti-acne 
effects of CBD, we still aimed to 
recognize target genes that might 
be involved in mediating the dif-
ferent anti-acne modalities and/
or might further strengthen the 
putative in vivo efficiency of CBD. 
Therefore, using rigid exclusion 
criteria (at least 2-fold changes 
in the corresponding expression 
levels equidirectional changes in 
all cases, and global, corrected  
P < 0.05), we found that 80 genes 
were significantly downregu-
lated, whereas 72 genes were 
significantly upregulated by CBD 
treatment (microarray results are 
accessible through GEO series 
accession number GSE57571; 
downregulated and upregulated 
genes, together with their aver-
aged fold changes, are summa-
rized in Supplemental Tables 1  
and 2). By using Q-PCR, we 

have confirmed that, following CBD treatment, expression of Rho 
GTPase-activating protein 9 (ARHGAP9, an endogenous inhibitor 
of the prolipogenic ERK signaling) (46) was upregulated, whereas 
the proliferation marker MKI67 was downregulated (Figure 6C). 
(This latter result perfectly confirmed our findings obtained in 
hSOC experiments [Figure 2I].) Moreover, also in line with our pre-
vious findings, we found that TRPV4 antagonism could success-
fully prevent both alterations (Figure 6C).

It is well known that activation of the ERK1/2 MAPK pathway 
plays a crucial role in the regulation of cellular proliferation (47). 
Furthermore, we have demonstrated recently that this pathway is 
involved in mediating the “prolipogenic” action of AEA on human 
sebocytes (12). Considering that administration of CBD led to 
opposing cellular effects (i.e., decreased lipogenesis and prolifera-
tion) and upregulation the ERK inhibitor ARHGAP9, we hypothe-
sized that CBD might inhibit MAPK activation. Indeed, AEA treat-
ment was able to activate the ERK1/2 MAPK cascade (as monitored 
by assessing the level of phosphorylated ERK1/2 [P-ERK1/2]), an 
effect that was completely abrogated by the coadministration of 

analysis (GSEA) (40–42) of the microarray results revealed that 
numerous mitosis and cell cycle (e.g., “mitosis,” “G

2
/M transi-

tion,” “cell cycle,” etc.), inflammation (e.g., “cytokine produc-
tion,” “cytokine biosynthetic process,” “TLR9 pathway,” “positive 
regulation of IκB kinase NF-κB cascade,” etc.), and lipid synthe-
sis–related (“acyltransferase activity,” “lipid biosynthetic pro-
cess,” “positive regulation of MAPK activity,” etc.) gene sets were 
identified among the downregulated ones, confirming our previ-
ous findings on the complex anti-acne effects of CBD. Moreover, 
downregulation of some “acne-related” gene sets (e.g., “IGF-1 
pathway” and “mTOR pathway”) (2, 43) also argued for the puta-
tive in vivo anti-acne efficiency of CBD. Further, upregulation of 
the “calcium signaling pathway” gene set confirmed the involve-
ment of (TRPV4-dependent) calcium signaling (detailed results of 
GSEA are available in Supplemental Excel files 1 and 2).

During further data processing, Biological Networks Gene 
Ontology (BiNGO) analysis (44, 45) was also performed (see Sup-
plemental Excel files 3 and 4; the hierarchy of the different gene 
ontology terms enriched among the downregulated and upreg-

Figure 5. Lipostatic activity of CBD is mediated by TRPV4. (A) Fluorescent Ca2+ imaging. Compounds were 

applied as indicated by the arrow. Fluorescence (measured in relative fluorescence units [RF]) was normalized to 

the baseline. “Low [Ca2+]
EC

” indicates the use of nominally Ca2+-free Hank’s solution. Two additional experiments 

yielded similar results. (B) Statistical analysis of the fluorescent Ca2+-imaging data. Fluorescence (expressed in 

RF) was normalized to the baseline. Measured peak values were expressed as the percentage of the baseline 

(mean ± SEM of 3 independent determinations). The solid line indicates 100%. Two additional experiments 

yielded similar results. ***P < 0.001 compared with the CBD-treated group. (C) Neutral lipid synthesis (Nile Red 

staining). Data are expressed as the percentage of the vehicle control (mean ± SEM of 4 independent determina-

tions). The solid line indicates 100%. Two additional experiments yielded similar results. “Low [Ca2+]
EC

” indicates 

the use of low-Ca2+ Sebomed medium. *P < 0.05, **P < 0.01, ***P < 0.001. (D and E) Neutral lipid synthesis (Nile 

Red staining) following selective gene silencing of TRPV4 channel (24-hour treatments, started at day 3 after 

the transfection). Data are expressed as the percentage of the untransfected vehicle control (mean ± SEM of 4 

independent determinations). The solid line indicates 100%. Two additional experiments yielded similar results.  

*P < 0.05, ***P < 0.001 compared with the SCR cells. “siV4a” and “siV4b” mark 2 different siRNA constructs 

against TRPV4. SCR, scrambled control; UC, untransfected vehicle control.
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CBD (Figure 7A). In a perfect agreement with our previous data 
(Figure 5, C–E, and Figure 6, A and C), this interference was found 
to be TRPV4 dependent, since the specific antagonist HC was 
able to fully prevent the effect of CBD (Figure 7A). This, again, 
confirmed the crucial role of TRPV4 activation in initiating the 
lipostatic and antiproliferative signaling cascade(s) of CBD.

We have also demonstrated that expression of nuclear recep-
tor interacting protein-1 (NRIP1, also known as RIP140; a core-
pressor essential for triglyceride storage in adipose tissue) (48) 
was downregulated in a TRPV4-dependent manner (Figure 6C). 
We have shown that silencing of NRIP1 (validated by Q-PCR and 
Western blotting; Supplemental Figure 14, A and B) mimicked the 
lipostatic effect of CBD (Figure 7B), suggesting 
that downregulation of NRIP1 is indeed an impor-
tant final effector of the lipid synthesis-inhibitory 
activity of CBD.

Antiinflammatory action of CBD is mediated by 

upregulation of tribbles homolog 3 and inhibition of 

the NF-κB pathway. Our microarray data have also 
highlighted the putative involvement of several 
innate immunity/inflammation-related genes in 
mediating the antiinflammatory action of CBD 
(Supplemental Tables 1 and 2). By using Q-PCR, 
we confirmed that expression of LL-37 cathe-
licidin (a key antimicrobial peptide expressed 
by and shown to be active in human sebocytes) 
(49) and tribbles homolog 3 (TRIB3, also known 
as SINK; a negative regulator of proinflamma-
tory NF-κB signaling) (50) was upregulated by 
CBD. Importantly (again, in line with our pre-
vious results [Figure 6B]), these CBD-induced 
gene expression changes were not prevented by 

the coadministration of the TRPV4 antagonist HC (Figure 6C). 
When assessing the functional role of TRIB3, we found that, 
after its selective silencing (Supplemental Figure 15, A and B), 
CBD was unable to exert its antiinflammatory action to prevent 
LPS-induced IL1B and IL6 upregulation (Figure 8A); in contrast, 
its lipostatic activity was not altered (Supplemental Figure 15C).

TRIB3 is known to inhibit the NF-κB pathway (50), and, 
furthermore, CBD has already been reported to exert its antiin-
flammatory actions via inhibition of the NF-κB signaling (51). 
Importantly, we found that CBD cotreatment indeed prevented 
the LPS-induced phosphorylation (hence inactivation) of the 
inhibitory IκBα and phosphorylation (hence activation) of the p65 

Figure 6. Anti-acne actions of CBD are mediated by parallel, partly independent signaling mechanisms. (A) CyQUANT proliferation assay after 72-hour 

treatments. *P < 0.05 compared with the vehicle control. #P < 0.05. The solid line indicates the level of the 24-hour vehicle control. Dashed line indicates 

the level of the 72-hour vehicle control. Results are expressed as the percentage of the 24-hour vehicle control (mean ± SEM of 4 independent determina-

tions). (B) TNFA mRNA expression following 24-hour LPS treatments with or without CBD and HC. *P < 0.05 compared with the vehicle control; #P < 0.05 

compared with the CBD-free LPS-treated group. Data are presented using the ΔΔCT method; peptidyl-prolyl isomerase A–normalized (PPIA-normalized) 

TNFA mRNA expression of the vehicle control was set as 1. Data are expressed as mean ± SD of 3 independent determinations. Two additional experi-

ments yielded similar results. (C) Validation of the key microarray results. mRNA expression of various target genes following 24-hour CBD treatments 

with or without HC. **P < 0.01, ***P < 0.001 compared with the vehicle control. ###P < 0.001. Data are presented using the ΔΔCT method; PPIA-nor-

malized mRNA expression of the vehicle control was set as 1 (solid line). Data are expressed as mean ± SD of 3 to 6 independent determinations. Two 

additional experiments yielded similar results.

Figure 7. Lipostatic effects of CBD are mediated by TRPV4-dependent inhibition of the 

prolipogenic ERK1/2 signaling and downregulation of NRIP1. (A) Western blot analysis of 

lysates of SZ95 sebocytes treated with 30 μM AEA, 10 μM CBD, and 1 μM HC for 5 minutes. 

Numbers on the OD row indicate the optical density of the P-ERK1/2 bands normalized to the 

corresponding ERK1/2 signals. (B) Quantitative determination of neutral lipid synthesis (Nile 

Red staining; 24-hour treatments started at day 3 after transfection). **P < 0.01,  

***P < 0.001 compared with the scrambled (SCR) control group. “siNRIP1a” and “siNRIP1b” 

mark 2 different siRNA constructs against NRIP1. Data are expressed as the percentage of the 

SCR vehicle control (mean ± SEM of 4 independent determinations). The solid line indicates 

100%.One additional experiment yielded similar results.
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(RelA) NF-κB isoform (Figure 8B). These data indicate that, irre-
spective of the investigated cell type, interference with the NF-κB 
pathway could be an important mechanism in the development of 
the antiinflammatory actions of CBD. It should also be noted that 
TRPV4 antagonism exerted only negligible effects on the action of 
CBD (Figure 8B), again confirming that antiinflammatory activity 
of CBD is a TRPV4-independent process.

CBD induces a novel (A2a adenosine receptor→cAMP→ 

TRIB3⊣NF-κB) antiinflammatory pathway. Finally, we aimed at 
identifying the target molecule of CBD, which, via the upregula-
tion of TRIB3, mediates the antiinflammatory action of the phyto-
cannabinoid. Since previous data suggested that elevation of the 
intracellular cAMP level is one of the possible inducers of TRIB3 
activation/upregulation (52), we have investigated the effects 
of CBD on the cAMP level. CBD treatment indeed elevated the 
intracellular cAMP concentration of the sebocytes (Figure 8C), 
arguing that a G

s
 protein–coupled receptor might be the primary 

target of CBD. A previous finding that, in a murine model of acute 
lung injury, the G

s
 protein–coupled A2a adenosine receptor was 

found to mediate the antiinflammatory actions of CBD (53) made 
this receptor a very probable target in our system as well. Indeed, 
we found that the A2a receptor was expressed by human sebo-
cytes both at the mRNA and protein levels (Supplemental Fig-

ure 16, A–C). In addition, we have also shown that application of 
a specific A2a receptor antagonist, ZM241385 (ZM), was able to 
significantly prevent the upregulation of TRIB3 by CBD (Figure 
8D). Moreover, ZM also suppressed the antiinflammatory effect 
of the phytocannabinoid as well as the CBD-evoked inhibition of 
LPS-induced NF-κB activation (Figure 8, E and F). These intrigu-
ing findings collectively argued that activation of the “A2a recep-
tor→cAMP→TRIB3⊣NF-κB” axis indeed plays a crucial role in 
mediating the antiinflammatory actions of CBD.

Discussion
In this study, we provide the first evidence that the nonpsychotropic 
phytocannabinoid CBD, which is already applied in clinical prac-
tice (16), exerted a unique “trinity of cellular anti-acne actions.” 
Namely, CBD, without compromising viability (Figure 2, B and C), 
(a) normalized the pathologically elevated lipogenesis induced by 
“pro-acne” agents, both in a quantitative and qualitative manner 
(universal lipostatic effect; Figure 1); (b) suppressed cell prolifer-
ation (antiproliferative effect; Figure 2A); and (c) prevented the 
actions of TLR activation or “pro-acne” agents to elevate proinflam-
matory cytokine levels (universal antiinflammatory effect; Figure 
3). Furthermore, we have shown that sebostatic actions of CBD also 
developed under “in vivo–like” conditions (hSOC; Figure 2, D–I).

Figure 8. Antiinflammatory actions of CBD are coupled to A2a receptor-dependent upregulation of TRIB3 and subsequent inhibition of the P65-NF-κB 

signaling. (A) IL1B and IL6 mRNA expression following 5 μg/ml LPS treatment with or without 10 μM CBD (24-hour treatments started at the day 2 after 

the transfection). ***P < 0.001 compared with the corresponding CBD-free treatments. ###P < 0.001 compared with the SCR group receiving the same 

treatments. “siTRIB3a” and “siTRIB3b” mark 2 different siRNA constructs against TRIB3. (B) Western blot analysis of lysates of SZ95 sebocytes treated 

with 5 μg/ml LPS, 10 μM CBD, and 1 μM HC for 25 minutes. (C) Determination of the intracellular cAMP concentration following 1-hour CBD (10 μM) or 

vehicle treatment. Data are presented as mean ± SEM of 3 independent determinations. One additional experiment yielded similar results. (D and E) TRIB3 

and TNFA mRNA expression following the indicated treatments (5 μg/ml LPS, 10 μM CBD, and 10 nM ZM). (A, D, and E) Data are presented using the ΔΔCT 

method; PPIA-normalized mRNA expression of the vehicle control was set as 1 (solid line). Data are expressed as mean ± SD of 3 independent determi-

nations. One additional experiment yielded similar results. (C–E) **P < 0.01, ***P < 0.001. (F) Western blot analysis of lysates of SZ95 sebocytes treated 

with 5 μg/ml LPS, 10 μM CBD, and 100 nM ZM for 25 minutes. (B and F) Numbers on the OD row indicate the optical density of the P-IκBα and P-P65 bands 

normalized to the corresponding β-actin signals. 
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modulate (e.g., μ- and δ-opioid receptors, etc.) the activity of a 
plethora of different receptors and, furthermore, to influence var-
ious other cellular targets (e.g., cyclooxygenase and lipoxygenase 
enzymes, fatty acid amide hydrolase, eCB membrane transporter, 
phospholipase A2, voltage-dependent anion channel 1, etc.) (15,  
32–37, 57–60). Therefore, exploration of its exact mechanism 
of action appeared to be a great challenge. The fact that we have 
shown previously that activation of TRPV1 can evoke similar 
lipostatic effects (38) as those found for CBD (Figure 1 and Figure 2, 
D–H), together with our present findings that CBD induced mem-
brane currents on sebocytes (Figure 4), prompted us to first inves-
tigate the role of TRP channels in mediating the above anti-acne 
modalities. We discovered that the lipostatic and antiproliferative 
effects of CBD were mediated by the activation of TRPV4 (and not 
TRPV1 or TRPV2) ion channels (Figures 5, C–E, and Figure 6A) and 
the concomitant increase in [Ca2+]

IC
. Actually, the “negative reg-

ulation” of lipogenesis by the elevation of [Ca2+]
IC

 is not unprece-
dented, since it has already been described in sebocytes (38) as well 
as in adipocytes (61, 62). It is also important to note that, within 
the confines of another study, we have shown that extracellular 
Ca2+ plays an important negative regulatory role in the sebaceous 
lipogenesis (C.C. Zouboulis et al., unpublished observations). Of 
further importance, we have also shown that the antiinflammatory 
activity of CBD is a TRPV4-independent process (Figure 6B).

Importantly, our data are in perfect agreement with the recent 
findings of De Petrocellis et al. (37). Using heterologous expres-
sion systems, they demonstrated that CBD is a potent but less 
efficacious activator of rat TRPV4 (as compared with the “classi-
cal” agonists or certain other phytocannabinoids, such as cannab-
ichromene [CBC] or cannabidivarin [CBDV]). Although the pos-
sibility that CBD might be a more efficacious activator of human 
TRPV4 than of rat TRPV4 should also be taken into consideration; 
preliminary data of our recently started assessment of the puta-
tive anti-acne effects of other phytocannabinoids also suggest 
that CBC and CBDV possess an even more pronounced lipostatic 
efficiency than CBD, which further argues for the central role of 
TRPV4 (A. Oláh et al., unpublished observations).

Besides the discussed “sebocyte-specific” steps of the patho-
genesis of acne, promisingly targeted by the “cellular anti-acne 
trinity” of CBD, one should also keep in mind that there are addi-
tional factors, which contribute to the progression of the disease: 
the infundibular hyperproliferation/hyperkeratinization, leading 
to comedogenesis and subsequent overgrowth of “acnegenic” 
Propionibacterium acnes strains (2). It is very important to note 
that, based on the literature, administration of CBD holds out the 
promise to target these factors as well. Indeed, CBD was shown to 
inhibit proliferation of hyperproliferative keratinocytes (54), and 
it was demonstrated to possess remarkable antibacterial activity 
(55). Although its efficiency against “acnegenic” Propionibacte-

rium acnes strains is not yet investigated, one can speculate that 
its putative indirect antibacterial activity (mediated by the upreg-
ulation of the expression of the antimicrobial peptide LL-37 cathe-
licidin [Supplemental Table 2 and Figure 6C]) could be further 
supported by direct bactericide effects, arguing that CBD might 
be very likely to behave as a potent anti-acne agent in vivo.

Given that sebum production is the result of holocrine secre-
tion, the amount of sebum produced is at least as dependent on 
the proliferative activity of basal layer sebocytes in the sebaceous 
gland as on the amount of lipogenesis that individual sebocytes 
engage in (27, 28). Therefore, the novel and significant antiprolif-
erative activity of CBD on human sebocytes in vitro and ex vivo 
documented here (Figure 2, A and I) is expected to greatly reduce 
sebum production in vivo. Moreover, it is also important to empha-
size that, clinically, it is highly desirable that basal sebogenesis and 
viability of sebocytes are unaffected (Figure 1, A–C, and Figure 2, 
A–C) by CBD (at least in the noncytotoxic concentrations and after 
short-term treatments; Supplemental Figure 2, A–E), since a suffi-
cient level of sebum production is a critical factor for maintaining 
proper function of the epidermal barrier, one of the central com-
ponents of skin homeostasis (56).

CBD has already been shown to activate (e.g., certain TRP 
channels, α1 and 5-HT1a receptor, etc.), antagonize (e.g., TRPM8 
and 5-HT3 receptor as well as “classical” [CB1 and CB2] and 
“novel” [GPR55] cannabinoid receptors, etc.), or allosterically 

Figure 9. Schematic overview of the cellular 

“anti-acne trinity” of CBD and its proposed 

mechanism of action. For details, see Dis-

cussion section.
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to inhibit LPS-induced NF-κB activation (again, in a TRPV4-inde-
pendent manner; Figure 8B), which can fully explain its previously 
demonstrated antiinflammatory actions.

Finally, we aimed at identifying the upstream signaling of the 
TRIB3 activation/upregulation by CBD. We found that CBD ele-
vated the level of cAMP (a known upstream regulator of TRIB3) 
(ref. 52 and Figure 8C), highlighting the putative role of a G

s
-cou-

pled receptor in initiating its antiinflammatory actions. We also 
demonstrated that sebocytes express G

s
-coupled A2a recep-

tors (which have already been shown to mediate antiinflamma-
tory actions of CBD) (ref. 53 and Supplemental Figure 16, A–C). 
Further, the specific A2a antagonist (ZM) was able to prevent 
upregulation of TRIB3 upon CBD treatment (Figure 8D). Then, 
we attempted to confirm the functional presence of the putative 
antiinflammatory A2a receptor→cAMP→TRIB3┤NF-κB axis. 
We found that coadministration of ZM abrogated the antiinflam-
matory action of CBD (Figure 8E). Moreover, we were also able 
to show that it abolished the NF-κB–inhibitory action of CBD 
(Figure 8F). Taken together, these data strongly argue that A2a 
receptor might be the primary orchestrator of the antiinflamma-
tory actions of CBD. It should also be noted that, according to the 
data published by Carrier et al. (68), CBD-mediated activation of 
A2a receptor is very likely to be an indirect action, realized by the 
primary inhibition of the equilibrative nucleoside transporter(s) 
(e.g., ENT1, which mediates adenosine uptake of the cells) and 
the subsequently elevated “adenosine tone.”

Collectively, our data introduce the phytocannabinoid CBD as 
a potent “universal” anti-acne agent, possessing a unique “triple 
anti-acne” profile (Figure 9). Multiple human studies have already 
investigated the safety of CBD (13, 14). Furthermore, it is already 
in use in many countries in clinical practice without any significant 
side effects (Sativex) (16). This is especially promising, because 
the currently available, most effective anti-acne agent, isotretin-
oin, is known to cause serious side effects (2, 69, 70). These data, 
together with our current findings, point to a promising, cost- 
effective, and, likely, well-tolerated new strategy for treating acne 
vulgaris, the most common human skin disease.

To the best of our knowledge, the exact pharmacokinetics 
of CBD in the human body is unknown, and there are no data in 
the literature on the (expected) intracutaneous accumulation of 
Sativex-derived, systemically applied CBD. However, given the 
extensively documented accumulation of phytocannabinoids from 
smoked marijuana in the pilosebaceous unit (where they become 
incorporated into the hair shaft) (71, 72), it is very likely that CBD 
can reach the sebaceous glands as well, can accumulate, and may 
well reach “therapeutically sufficient” concentrations there.

Moreover, it is very important to note that, besides the sys-
temic application, one should keep in mind the possibility of the 
topical administration. Although the levels of CBD seen in the 
plasma of patients receiving Sativex are below (73) the CBD doses 
(= lower micromolar range) that exerted the most robust effects in 
our studies, such doses could easily be achieved after topical CBD 
application, using appropriate vehicles already used in current 
standard acne management. Due to its high lipophilicity, CBD 
is expected to preferentially enter the skin via the transfollicular 
route and to accumulate in the sebaceous gland (74, 75). Of great 
importance, such an accumulation has been documented already 

In order to identify additional downstream targets, genome-
wide microarray experiments were performed on 3 independent 
sets of control and CBD-treated (10 μM for 24 hours) sebocytes. 
GSEA (40–42) and BiNGO analysis (44, 45) of the microarray 
results uniformly confirmed our results, arguing for complex anti-
acne actions upon CBD administration, as indicated by downregu-
lation of inflammation (e.g., “cytokine production”), lipid synthe-
sis (e.g., “lipid biosynthetic process” and “positive regulation of 
MAPK activity”), proliferation-related (e.g., “mitosis” and “G

2
/M 

transition”), and “general pro-acne” (e.g., “mTOR pathway” and 
“IGF-1 pathway”) (2, 43) gene sets and BiNGO terms (Supplemen-
tal Excel files 1–4 and Supplemental Figures 12 and 13).

Besides the above results, microarray analyses also revealed 
that levels of 80 genes were downregulated upon CBD treatment, 
whereas expression of 72 genes was upregulated upon CBD treat-
ment, among which multiple potential “anti-acne” effectors were 
identified (Supplemental Tables 1 and 2). Q-PCR validation of 
the most promising target genes revealed that (in agreement with 
our cell physiology data) expression of lipid synthesis–related 
(NRIP1 and ARHGAP9) and proliferation-related (MKI67) genes 
was altered in a TRPV4-dependent manner, whereas changes in 
the expression of “inflammation” genes were found to be TRPV4 
independent (Figure 6C). Moreover, alterations of ARHGAP9 
expression (a known endogenous inhibitor of ERK signaling) 
(46) suggested that inhibition of the prolipogenic MAPK path-
way (12) might play a role in mediating the lipostatic effects of 
CBD. Indeed, we found that CBD inhibited AEA-induced (pro-
lipogenic) (12) ERK1/2 phosphorylation in a TRPV4-dependent 
manner (Figure 7A), confirming again the crucial role of TRPV4 
in mediating the action of CBD.

We also silenced another “lipid-regulating gene” (i.e. NRIP1) 
(Supplemental Figure 14, A and B). As expected (48), knockdown 
of NRIP1 was able to mimic the lipostatic effect of CBD (Figure 7B).

Next, we aimed at revealing the signaling pathway of the anti-
inflammatory actions. Thorough assessment of the microarray 
data highlighted the putative role of TRIB3, a known inhibitor of 
proinflammatory NF-κB signaling (50). In addition, inhibition of 
NF-κB signaling plays a crucial role in the development of CBD-
mediated antiinflammatory actions in other systems (51). RNA

i
-

mediated selective gene silencing of TRIB3 in human sebocytes 
(Supplemental Figure 15, A and B) fully abrogated the ability of 
CBD to inhibit LPS-induced proinflammatory responses (Fig-
ure 8A). Although a previous study would have suggested it (63), 
interestingly, TRIB3 was found not to participate in mediating the 
lipostatic effects of CBD in sebocytes (Supplemental Figure 15C).

It is also noteworthy that TRIB3 has been identified recently 
as a potent phytocannabinoid target gene (64–66). These results, 
together with our data presented here, strongly argue for the key 
participation of TRIB3 in mediating cellular effects of cannabinoids.

Although CBD-dependent upregulation of its several known 
target genes, such as activating transcription factor 4, aspara-
gine synthetase, cation transport regulator-like 1, and DNA-dam-
age-inducible transcript 3 (refs. 66, 67, and Supplemental Tables 
1 and 2), also argued for the activation of a TRIB3-dependent sig-
naling pathway, to further strengthen the “TRIB3-hypothesis,” we 
have also investigated the effects of CBD on one of the major cel-
lular targets of TRIB3, i.e., NF-κB. As expected (51), CBD was able 
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As secondary antibodies, horseradish peroxidase–conjugated rab-

bit or mouse IgG Fc segment–specific antibodies (developed in goat 

and sheep, respectively; Bio-Rad) were used. Densitometric analy-

sis of the signals was performed by using ImageJ software (NIH). To 

assess equal loading, when indicated, membranes were reprobed with 

anti–β-actin antibodies and visualized as described above.

Full-thickness hSOC and sample preparations. Biopsies of intact 

human scalp and arm skin samples were obtained from 4 women (20). 

Lipid production and cellular proliferation were determined by using 

Oil Red O staining and MKI67 labeling. Images were analyzed by 

ImageJ image analysis software (NIH).

RNA
i
. RNAi was performed according to our optimized protocols 

(12, 38). SZ95 sebocytes were transfected with specific Stealth RNAi 

oligonucleotides (40 nM) against NRIP1 (IDs: HSS112045 [“siNRIP1a”]  

and HSS112046 [“siNRIP1b”]), TRIB3 (IDs: HSS184051 [“siTRIB3a”] 

and HSS184052 [“siTRIB3b”]), TRPV1 (IDs: HSS111306 [“siV1a”] 

and HSS111304 [“siV1b”]), TRPV2 (IDs: HSS122144 [“siV2a”] and 

HSS122145 [“siV2b”]), and TRPV4 (IDs: HSS126973 [“siV4a”] and 

HSS126974 [“siV4b”]) using Lipofectamine 2000 (all from Life Tech-

nologies). For controls, RNAi Negative Control Duplexes (Scrambled 

RNAi “medium”) were applied.

Microarray analysis. Gene expression analysis of 3 independent 

sets of control and CBD-treated SZ95 sebocytes (10 μM CBD for 24 

hours) was performed by using Human Whole Genome Oligo Micro-

array (44K) (Agilent Technologies). Alterations in the gene expression 

were regarded as significant if (a) there were at least 2-fold changes in 

the corresponding levels; (b) the changes were equidirectional in all 

cases; and (c) global, corrected P values were less than 0.05. Evalua-

tion, GSEA, and Gene Ontology analysis (BiNGO) of the results were 

performed by Abiomics Ltd. (http://www.abiomics.eu). Data have 

been deposited in the NCBI Gene Expression Omnibus (79) and are 

accessible through GEO series accession number GSE57571 (http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57571).

Determination of the intracellular cAMP concentration (ELISA). 

SZ95 sebocytes were treated for 1 hour with vehicle or CBD (10 μM). 

Cells were then lysed (cell density: 107 cells per ml), and lysates were 

assayed immediately according to the manufacturer’s protocol, using 

Parameter Cyclic AMP Assay (R&D Systems). Evaluation of the data 

was performed by using the Four Parameter Logistic Curve online 

data analysis tool of MyAssays Ltd. (http://www.myassays.com/

four-parameter-logistic-curve.assay).

Patch-clamp analysis and fluorescent Ca2+ imaging. Whole-cell 

patch-clamp recordings in the voltage-clamp configuration were per-

formed using an Axopatch 200A amplifier (Molecular Devices) or by 

using an EPC-10 amplifier. Alterations in the [Ca2+]
IC

 were determined 

following 1 μM Fluo-4 AM loading by Fluorescent Image Plate Reader, 

as described in our previous report (80).

Statistics. Data were analyzed by IBM SPSS Statistics 19 (SPSS 

Inc.) software, using Student’s 2-tailed 2 sample t test or 1-way ANOVA 

with Bonferroni’s and Dunnett’s post-hoc probes. P values of less than 

0.05 were regarded as significant. Homogeneity of variances was ana-

lyzed by Levene’s test. If Levene’s test indicated inhomogeneity of 

variances, Games-Howel test was used instead of Bonferroni.

Study approval. This study was approved by the Institutional 

Research Ethics Committee of the University of Lübeck and adhered 

to the Declaration of Helsinki principle guidelines. Study subjects pro-

vided informed consent prior to their participation.

for multiple topically applied lipophilic compounds, e.g., for ste-
roid hormones (76) or photosensitizers (77), etc., arguing that the 
CBD doses tested here are translationally absolutely relevant.

All in all, our novel data, along with intriguing literature 
findings, strongly encourage the future study in clinical trials 
of whether either systemic or topical application of CBD and/or 
appropriate modulation of the related signaling pathways (Fig-
ure 9) deserves full clinical exploration as a potent, novel class of 
anti-acne agents.

Methods
More details regarding the methods are available in the Supplemen-

tal Methods.

Cell culturing, determination of intracellular lipids, investigation of 

the lipidome. Human immortalized SZ95 sebocytes (19) were cultured 

as described previously (12, 38). For semiquantitative detection of 

sebaceous lipids, Oil Red O staining was applied, whereas for quan-

titative measurements, fluorescent Nile Red staining was applied, as 

detailed in our previous work (12, 38). The sebaceous lipidome was 

analyzed by a HPLC-ToF/MS method as described previously (78).

Determination of viability, apoptosis, necrosis, and cellular pro-

liferation. Viability was assessed by MTT assay (Sigma-Aldrich) as 

described previously (10, 12). Apoptotic and necrotic processes were 

investigated by combined DilC1
(5) and SYTOX Green staining (Life 

Technologies), measuring the alterations in the mitochondrial mem-

brane potential and in the plasma membrane permeability, respec-

tively, as described previously (10, 12). The degree of cellular growth 

was determined in 96-well plate format by measuring the DNA con-

tent of the wells using the CyQUANT Cell Proliferation Assay Kit (Life 

Technologies), according to the manufacturer’s protocol.

Q-PCR. Q-PCR was performed as detailed in our previous reports 

(12, 38). PCR amplification was performed by using TaqMan primers 

and probes (assay ID-s: Hs00174128_m1 for TNFA, Hs00218912_m1 

for TRPV1, Hs00275032_m1 for TRPV2, Hs00222101_m1 for TRPV4, 

Hs00175798_m1 for TRPA1, Hs00375481_m1 for TRPM8, Hs00189038_

m1 for cathelicidin, Hs00174097_m1 for IL1B, Hs00985639_m1 for 

IL6, Hs01032443_m1 for Ki67 (MKI67), Hs00942766_s1 for NRIP1, 

Hs01082394_m1 for TRIB3, Hs00261256_m1 for ARHGAP9, and 

Hs00169123_m1 for A2a receptor [ADORA2A]) and the TaqMan univer-

sal PCR master mix protocol (Applied Biosystems). As internal controls, 

transcripts of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), 

peptidyl-prolyl isomerase A (cyclophilin A; PPIA), and 18S ribosomal 

RNA (18S) (assay IDs: Hs99999905_m1, Hs 99999904_m1, and 

Hs99999901_s1, respectively) were determined.

Immunocytochemistry. Expression of TRP channels and adeno-

sine A2a receptor was investigated by using TRPV1-specific (Sigma- 

Aldrich); TRPV2-, TRPA1-, TRPM8-, A2a-specific (all from AbCam); 

and TRPV4-specific (Alomone Labs) primary antibodies (all produced 

in rabbit), and Alexa Fluor 488–conjugated rabbit IgG Fc segment-spe-

cific secondary antibodies (developed in goat; Life Technologies). Nuclei 

were visualized using DAPI (Vector Laboratories). As negative controls, 

the appropriate primary antibodies were omitted from the procedure.

Western blotting. Western blotting was performed as described pre-

viously (12, 38) by using rabbit anti-human P-P65, NRIP1, and TRIB3 

(all from Novus Biologicals); rabbit anti-human ERK1/2 and mouse 

anti-human P-ERK1/2 (both from Santa Cruz); mouse anti-human 

P-IκBα (Cell Signaling); or the above mentioned primary antibodies.
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