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Abstract

Objectives The endocannabinoid system is an endogenous lipid signalling network

comprising arachidonic-acid-derived ligands, cannabinoid (CB) receptors, transporters and

endocannabinoid degrading enzymes. The CB1 receptor is predominantly expressed in

neurons but is also co-expressed with the CB2 receptor in peripheral tissues. In recent

years, CB receptor ligands, including D
9-tetrahydrocannabinol, have been proposed as

potential anticancer agents.

Key findings This review critically discusses the pharmacology of CB receptor activation

as a novel therapeutic anticancer strategy in terms of ligand selectivity, tissue specificity and

potency. Intriguingly, antitumour effects mediated by cannabinoids are not confined to

inhibition of cancer cell proliferation; cannabinoids also reduce angiogenesis, cell migration

and metastasis, inhibit carcinogenesis and attenuate inflammatory processes. In the last

decade several new selective CB1 and CB2 receptor agents have been described, but most

studies in the area of cancer research have used non-selective CB ligands. Moreover, many of

these ligands exert prominent CB receptor-independent pharmacological effects, such as

activation of the G-protein-coupled receptor GPR55, peroxisome proliferator-activated

receptor gamma and the transient receptor potential vanilloid channels.

Summary The role of the endocannabinoid system in tumourigenesis is still poorly

understood and the molecular mechanisms of cannabinoid anticancer action need to be

elucidated. The development of CB2-selective anticancer agents could be advantageous in

light of the unwanted central effects exerted by CB1 receptor ligands. Probably the most

interesting question is whether cannabinoids could be useful in chemoprevention or in

combination with established chemotherapeutic agents.

Keywords anticancer agent; cancer; cannabinoids; chemoprevention; endocannabinoid

system

Introduction

The endocannabinoid system (ECS) comprises the two well-characterised G-protein-

coupled receptors (GPCRs) CB1 and CB2,
[1–3] as well as the putative newGPCRsGPR55 and

GPR119,[4,5] former orphan receptors. While cannabinoid binding to GPR55 has been

shown (vide infra), GPR119 appears to have little affinity for cannabinoids.[6] There is also

pharmacological evidence of other putative cannabinoid receptors that remain unknown.[7,8]

The endogenous ligands that activate CB receptors are arachidonic acid derivatives,

primarily arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol (2-AG),[9,10]

which are directly released from cell membranes. Endocannabinoids are pleiotropic lipids

and their actions are not restricted to cannabinoid receptors. Anandamide also activates

transient receptor potential vanilloid 1 (TRPV1), peroxisome proliferator-activated receptors

(PPARs), and potentially signals via serotonin 5HT(3) receptors.[11–13] Moreover, 2-AG is an

apparently potent ligand for GPR55 whose function is yet to be uncovered.[5,14]

Among other effects, endocannabinoids have been reported to modulate cell

differentiation, cell signalling, cell migration and cell fate.[15–17]

The terpenophenolic phytocannabinoids from Cannabis sativa, with the prototype

cannabinoid D
9-tetrahydrocannabinol (D9-THC),[18] were the first bioactive CB receptor
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ligands to be described and they have served as molecular

scaffolds for the chemical development of analogous

structures such as CP55,940.[19] The use of CP55,940 as a

radioligand has played a key role in the cloning of the CB

receptors.

It is probably not an overstatement to claim that without

cannabis research the ECS would not have been explored so

extensively in the last two decades. It is becoming

increasingly clear that the ECS is involved not only in

central nervous system regulation (mainly via CB1) and

neuroimmunological processes (both via CB1 and CB2) but

also in several peripheral physiological processes.[20] It is

important to highlight that many of the functions of the

ECS that are currently proposed are not yet fully under-

stood. Nonetheless, there is clinical evidence that CB1

receptor antagonists (inverse agonists) such as rimonabant

(SR141716A) are useful in the treatment of obesity and for

the improvement of cardiovascular and metabolic risk

factors. (Rimonabant was the first therapeutic CB1 receptor

blocker approved in Europe but was withdrawn in October

2008 because of psychiatric side effects.) CB1 receptor

antagonists also have good prospects in other therapeutic

areas, including smoking cessation, alcohol addiction and

cognitive impairment.[21] CB1 agonists are useful for the

prevention of nausea and vomiting and to stimulate

appetite.[22] There is increasing evidence that CB receptors

are involved in numerous immune mechanisms and are

generally able to attenuate inflammatory processes.[23,24]

There are numerous reports on the anti-inflammatory action

of CB receptor ligands from animal studies. Positive effects

have been reported using CB ligands in models of liver

inflammation,[25] neuroinflammation,[26] gut inflamma-

tion,[27] skin inflammation[28] and arthritis.[29] Based on

CB2 receptor knockout studies, the involvement of this

receptor has been suggested in immune cell function and

development, infection, embryonic development, bone loss,

liver disorders, pain, autoimmune inflammation, allergic

dermatitis, atherosclerosis, apoptosis and chemotaxis.[30] In

particular, non-psychoactive CB2 receptor ligands have

been shown to be effective in bone degeneration,[31–34]

gut inflammation,[35] neuroprotection[36] and atherosclero-

sis.[37,38] Given that cannabinoid pharmacology is exception-

ally complex, it is difficult to provide a general picture.

Overall, however, it seems that CB2-selective agonists and

inverse agonists and CB1 inverse agonists could be promising

therapeutic agents to target chronic inflammatory diseases.

Moreover, indirect activation of the ECS via modulation of

endocannabinoid tone, such as inhibition of fatty acid amide

hydrolase (FAAH) and monoacyl glycerol lipase, may be

a promising strategy to target pathological inflammatory

processes.[39] Different selective and non-selective CB1/CB2

receptor ligands have been described, which show potential

for a wide range of diseases.[20,21]

Evidence accumulated within the last decade suggests that

CB receptor agonists may have antitumour properties in a

variety of cancer types; this topic has been reviewed in

several cancer-related journals.[40–43] In this review, the

recent developments and insights are discussed with respect

to CB receptor signalling, ligand selectivity, specificity of

effect in different tissues and potential therapeutic relevance.

In 1975, Munson and colleagues reported for the first time

that cannabinoids can reduce tumour growth and viability of

lung cancer cells in vitro as well as in vivo.[44] After this

initial observation another 20 years passed until more

detailed investigations yielded further insights into the

anticancer mechanisms of cannabinoids. However, the

mechanism of action of CB receptor ligands has started to

become uncovered only recently (vide infra). While some

signalling events involved in the cytotoxic effects exerted by

cannabinoids apply for all cellular models, other cellular

mechanisms are restricted to only a few cell types. Thus, an

important question is how CB receptor activation ultimately

leads to inhibition of tumour growth and apoptosis of cancer

cells. It is currently not clear whether these effects are

specific for certain types of cancer cells, and whether the

in-vitro data correlate with more physiological conditions, in

particular with regard to the concentrations employed.

CB-receptor mediated signal transduction
events leading to anticancer effects

Despite a growing amount of data on the cellular signalling

events triggered by cannabinoids in non-neuronal cells, as yet

there is no straightforward explanation for the molecular

mechanism for their anticancer action. Pharmacological

intervention in cancer therapy typically relies on well-

defined molecular events that attenuate tumour growth, such

as inhibition of microtubule dynamics, inhibition of topo-

isomerase or DNA intercalation. So far, GPCR signalling in

cancer therapy is not a well-designed strategy and there are

still many unanswered questions relating to signalling

dynamics, limited prolongation of effect due to desensitisa-

tion, specificity of signals and potentially unwanted effects.

However, with a change of paradigm from the ‘one selective

drug acting on one target’ to network pharmacology,[45]

anticancer strategies involving GPCRs may become more

interesting in the future. Fundamental to such developments

is a better understanding of GPCR cellular signalling

cascades, as cancer cells often hijack the normal physio-

logical functions of GPCRs to survive.[46] Targeting of

dysregulated kinases in cancer cells could be accomplished

via GPCR signalling, and modulation of the cancer kinome

may drive tumour cells into apoptosis. As shown in the

following sections, CB receptor signalling events that lead to

antitumour effects are complex and largely depend on tissue

type and physiological context (Figure 1). The major

signalling molecules involved in cannabinoid-induced anti-

tumour action are described in the following sections.

Ceramide
Ceramides are composed of sphingosine and fatty acid

moieties and are commonly found at high concentrations

within the cell membrane, where they are derived from

sphingomyelin, one of the major membrane lipids. Ceramide

is also a lipid messenger specifically triggered upon

activation (e.g. via GPCR activation) and appears to play a

key role in the cytoplasm, mediating different effects on cell

survival following CB receptor activation.[47] An acute rise

of ceramide by sphingomyelin hydrolysis is observed in

both glioma cells and normal primary astrocytes after

cannabinoid challenge, presumably mediated through the
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CB1 receptor.[48,49] In addition, malignant glioma cells, as

well as other cancer cells (e.g. pancreatic cancer), show

sustained de-novo ceramide generation in a CB1/CB2-

dependent manner, resulting in inhibition of AKT (see

below),[50,51] which among other cues will finally drive the

cells into apoptosis. Two further studies have shown the role

of ceramide as a key player in glioma anticancer action

mediated via the CB2 receptor.[52,53] Interestingly, it was

recently shown that either CB1 or CB2 receptor activation

induces apoptosis through de-novo ceramide synthesis in

colon cancer cells, with tumour necrosis factor (TNF)-a

acting as a link between CB receptor activation and ceramide

production.[54] More strikingly, it appears that cannabinoids

are able to protect astrocytes and other neuronal cells from

oxidative stress[55] and other neurotoxic signals[56] through

ceramide signalling. Where the exact switch for this

differential reaction to the apparently identical stimulus lies

remains unknown, although in terms of known signalling

events it should be concluded that AKT acts downstream of it.

AKT signalling
AKT1 (v-akt murine thymoma viral oncogene cellular

homolog), also known as ‘AKT’ or protein kinase B,

represents a group of three enzymes of the serine/threonine-

specific protein kinase family and is involved in cellular

survival pathways by inhibiting apoptotic processes.[57]

Independent of the ceramide-mediated effect on AKT

described above, both CB1 and CB2 receptors are coupled to
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Figure 1 Major signalling pathways involved in the anticancer effects exerted by cannabinoids. The fact that most cannabinoids studied so far

interact with more than one receptor adds to the complexity of the pharmacological effects. Ceramide, AKT and ERK are likely to be key mediators in

the inhibition of cancer cell growth and induction of apoptosis. AKT, protein kinase B; ERK, extracellular signal-regulated kinase; GPR55, G-protein

receptor 55, PPAR, peroxisome proliferator-activated receptor; TRP, transient receptor potential family of channels (including transient receptor

potential vanilloid (TRPV)).
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Gi/Go proteins in different cell types and they inhibit

adenylate cyclase and can activate phosphatidylinositol

3-kinase (PI3-K), which activates AKT via phosphatidylino-

sitol (3,4,5)-triphosphate (PIP3).[58,59] Along that line, canna-

binoid stimulation of whole brain areas and of healthy

non-transformed cells such as astrocytes and also of

CB1-positive Chinese hamster ovary cells causes AKT

activation almost independently of drug concentration.[60–62]

In contrast, one of the general pro-apoptotic signalling events

after cannabinoid treatment in cancer cells is the dephos-

phorylation of AKT1, occurring after both CB1 and CB2

receptor activation and probably involving dominant ceramide

signalling. PI3-K-dependent AKT activation can be regulated

through the tumour suppressor PTEN (phosphatase and

tensin homolog), which works essentially as the opposite of

PI3-K.[63] PTEN acts as a phosphatase to dephosphorylate

PIP3 back to phosphatidylinositol(4,5)P2. This removes the

membrane-localisation factor from the AKT signalling path-

way. Without this localisation, the rate of AKT activation

decreases significantly, as do the all the downstream pathways

that depend on AKT for activation. PIP3 can also be

dephosphorylated at position 5 by the SH-2-containing inositol

phosphatase (SHIP) family of inositol phosphatases, SHIP1

and SHIP2. These polyphosphate inositol phosphatases

dephosphorylate PIP3 to form phosphatidylinositol(3,4)P2.

An increasing amount of data suggests that AKT inhibition is

one of the critical events after cannabinoid administration,

determining the cellular downstream effects that ultimately

lead to apoptosis (Figure 1). Interestingly, in transformed

cancer cells, low nanomolar concentrations of CB agonists

lead to AKT phosphorylation through transactivation by

epidermal growth factor receptor (EGFR), followed by a

prosurvival proliferative burst,[64] whereas higher concentra-

tions decrease the activation status of AKT, usually culminat-

ing in growth arrest or apoptosis.[51,65,66] Importantly,

overexpression of AKT could rescue cannabinoid-induced

apoptosis in melanoma cells, reflecting its essential role in the

mediation of cannabinoid-induced apoptosis.[67] Therefore, the

concentration range of cannabinoids and the cellular transfor-

mation status appear to critically influence the differential

cytotoxic effects mediated via AKT signalling. Whether AKT

is a molecular switch that determines the often biphasic effects

exerted by cannabinoid treatment (vide infra) needs to be

elucidated.

Extracellular signal-regulated kinase
Another well-known signalling molecule recruited upon

treatment of cancer cells with CB receptor agonists is

extracellular signal-regulated kinase (ERK). However,

reports relating to its activation or inhibition by cannabinoids

differ between cancer types, indicating an as yet unclear and

maybe more complex role. After incubation with cannabi-

noids, cells derived from gliomas,[68] prostate cancer[66] and

breast cancer[69] display a sustained ERK activation;

activation levels of ERK remain unchanged in melanoma

cells,[67] whereas in lung[70] and colon cancer cells

phosphorylation of ERK was reduced.[65] While inhibition

of the usually pro-proliferative signalling molecule ERK is

in line with a pro-apoptotic signalling cascade,[71] it is more

difficult to understand the contribution of activated ERK to

the cannabinoid-induced inhibition of growth. There is

evidence that ceramide induced by cannabinoid treatment

and inhibition of protein kinase A by Gi-coupled CB receptor

stimulation both can cause chronic ERK activation, which is

reported to lead to cell cycle arrest and cell death.[68,69] In

leukaemia cells, ERK1/2 was induced more strongly by CB2

receptor-selective agonists than in primary leucocytes.[72]

The same study showed that ERK phosphorylation was

context dependent, as lipopolysaccharide-induced ERK1/2

activation could be partially blocked by CB2 ligands.

P8 (Sp(G/C)F-1)
Transcription factor P8 (or candidate of metastasis 1, also

referred to as Sp(G/C)F-1), is an endoplasmic-reticulum-

associated stress protein able to bind to DNA and is similarly

affected by CB-receptor stimulation.[73] After treatment with

cannabinoids, it is upregulated in different cancer cell lines,

probably in response to de-novo synthesised ceramide, which

subsequently leads to co-recruitment of the transcription

factors activating transcription factor 4 (ATF4), TRB3 and

C/EBP homologous protein (CHOP), all three of which are

also critically involved in the cellular response to stress

stimuli, probably via both CB1 and CB2 receptors.[50,74] P8

seems to be a key factor for cellular sensitivity towards

cannabinoids, as siRNA-mediated knock-down of P8 can

abolish the cytotoxicity of D
9-THC in glioma cells and

breast cancer cells. Moreover, P8 is also implicated in the

potential synergistic effect of chemotherapeutic agents with

cannabinoids.[50,75]

Cell cycle arrest and apoptosis

As classic anticancer agents directly inhibit tumour cell

growth, the effects of cannabinoids on cancer cell cycle and

apoptosis induction have been investigated in detail. However,

no general picture is emerging as with, for example, the G2/M

cell cycle arrest typically observed with tubulin-targeting

antimitotic agents, probably because different cell types react

differently to distinct concentrations of cannabinoids and

there are different stress-related mechanisms of action.[42]

Moreover, cannabinoids are only moderately cytotoxic and

typically exert their effects in the upper-nanomolar and

micromolar concentration ranges, depending on the initial

cell number and experiment. For example, in U373MG glioma

cells expressing CB receptors, D9-THC induced apoptosis at

concentrations greater than 5 mM in vitro,[76] which appears to

be a typical cytotoxic concentration. While some CB-receptor-

expressing cancer cells survive treatment with higher micro-

molar concentrations (e.g. HL60 cells) (Gertsch et al.,

unpublished data), other cancer cells (e.g. Jurkat T-cells[77])

undergo cell cycle arrest and apoptosis, in part coupled to the

signalling pathways described above. Interestingly, R(+)-

methanandamide, WIN-55,212-2 and D
9-THC lead to up-

regulation of tumour suppressor genes such as p16 (INK4A),

p27 and p53,[66,78,79] and the oncogene RB is hypophos-

phorylated,[67,80] which could be due to altered activation

levels of either AKT or ERK. Further down this cascade,

different cyclins such as D1 and D2, as well as the

transcription factor E2F1, are down-regulated, followed by

lower activity of cyclin-dependent kinases cdk2, 4 and 6[66]

and cdc2,[81] finally causing cell cycle arrest at different cell
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cycle check points. These events can either reduce prolifera-

tion of cells or prime them for apoptosis. Additionally,

cannabinoid challenge with D
9-THC and WIN-55,212-2 can

prompt cancer cells to undergo apoptosis through the

mitochondrial apoptosis pathway, where AKT inhibition

classically leads to activation of the pro-apoptotic BCL2-

family member BCL2 antagonist of cell death (BAD).[65,82]

Upon BAD activation, mitochondrial cytochrome c is

released, leading to activation of caspase-3 and cleavage of

poly(ADP-ribose) polymerase,[81] which will finally drive

cells into apoptosis. This putative mechanism may account for

cell cycle arrest and induction of apoptosis in some adherent

cells, but the mechanism may be significantly different in

other cell types (vide infra).

Anti-angiogenesis effects

All of the growth inhibitory mechanisms of cannabinoids

discussed so far are direct cellular effects. However,

cannabinoids can modulate intercellular signalling, leading

to modulation of important regulatory factors involved in

inflammation and cellular activation and thereby influence

tumour development indirectly. In this regard, the effect of

cannabinoid treatment on tumour angiogenesis ranks most

prominently.[83] Different cannabinoid compounds with

varying CB1 and CB2 receptor affinities decrease the

formation of new blood vessels in tumours of different

origins (e.g. non-melanoma skin cancer and glioma) by

downregulating essential proangiogenic factors such as

vascular endothelial growth factor (VEGF), placental growth

factor and angiotensin II accompanied by dephosphorylation

of VEGF receptors 1 and 2.[79,84,85] These events could also

partially account for a lower rate of metastasis, as this

process is crucially linked to peri- and intratumoural

vascularisation.[86]

It is not only cancer cells that are influenced by

cannabinoids; endothelial cell sprouting and vessel formation

were blocked in various angiogenesis assays by application

of R(+)-methanandamide.[87] Both the CB1 receptor agonist

ACEA and the CB2 receptor agonist JWH-015 decreased the

weight and vascularisation of carrageenan-induced granulo-

mas in rats and reduced mast cell number and activation in

granulomatous tissue.[88] Interestingly, in this study ACEA

and JWH-015 prevented the transcription and expression of

rMCP-5, a protein involved in sprouting and advance of new

blood vessels. Currently, it is unclear whether these effects

are actually mediated via CB receptor signalling or whether

other as-yet unknown mechanisms are involved. However,

the effectiveness of the CB2-receptor-selective agonists

JWH-015 and JWH-133 in blocking monocyte migration[89]

suggests that CB2 activation may generally inhibit cell

migration and vessel formation. In fact, cell migration is a

key event in tumour metastasis and angiogenesis. Various

studies have shown that cannabinoids affect cell migration

through both CB1 and CB2 receptors, as well as through

mechanisms related to elusive cannabinoid targets.[17,90]

Overall, the evolving picture is rather complex, as apparently

anandamide and 2-AG produce opposite effects and only

2-AG signals via CB receptors.[17] Endocannabinoids now

join the list of factors involved in bone marrow cell

proliferation and differentiation, the ECS being a part of a

highly complex lipid network that is still poorly understood.

The CB2 receptor – a proto-oncogene?

It has been shown that cannabinoids stimulate proliferation

of neural stem/precursor cells acting via both CB1 and CB2

receptors, leading to activation of the PI3-K/AKT path-

way.[91] Both the anti- and pro-proliferative effects exerted

via CB receptor activation are intriguing and clearly deserve

further investigation. In leukaemia cells, the CB2 receptor

has been suggested to act as a proto-oncogene, which under

certain circumstances may turn into an oncogene that

promotes carcinogenesis. Valk and colleagues have identi-

fied the new common virus integration site Evi11 and

demonstrated that the gene encoding the CB2 receptor (Cnr2)

is its potential target, thus suggesting that Cnr2 could be a

proto-oncogene.[92] Subsequent research by the same group

demonstrated that the CB2 receptor can act as an oncoprotein

that blocks neutrophilic differentiation when overexpressed

in myeloid precursor cells and that haematopoietic precursor

cells expressing high levels of CB2 have increased suscept-

ibility for leukaemia development, thus suggesting that CB2

and Evi1/Evi11 might collaborate in leukemogenesis.[93]

Moreover, the CB2 receptor appears to mediate this activity

through mitogen-activated protein kinase ERK/(MEK) and

PI3-K pathways.[94] This would suggest that blocking rather

than activating the CB2 receptor should be beneficial in the

treatment of leukaemia. Alternatively, stabilising the CB2

receptor in its inactive state using inverse agonists could

counteract leukemogenesis. High CB2 receptor expression in

myeloid precursors is also associated with different immu-

nomodulatory effects, such as inhibition of immune cell

migration[90] and inhibition of TNF-a expression.[20,24] Since

both CB2-selective agonists and inverse agonists are anti-

inflammatory in vivo and, paradoxically, apparently both via

CB2 interaction,[20,24,95,96] it is currently not clear whether

CB2-selective agonists or inverse agonists should be devel-

oped for therapeutic intervention. Moreover, the effects of

these ligands may differ substantially in vitro and in vivo, and

an agonist in vitro may act as an antagonist in vivo and vice

versa.[96] However, it is still not clear whether the CB2

receptor actually becomes an oncoprotein and whether this

relates to mutations or increased receptor expression. On the

other hand, it is already clear that the CB2 receptor regulates

cell growth and differentiation in promyelotic human cells,

being a regulator of signal transduction via the oncogenic

Erk1/2 pathways and execution of mitogenic signals that are

relevant to cell differentiation (vide supra). In light of the

fact that healthy humans have a high surface expression of

functional CB2 receptors in monocytes and B cells but a low

surface expression in T cells (Gertsch et al., unpublished

data), it is possible that Cnr2 is a proto-oncogene in T cells

but not in promyelocytic cells (precursors of monocytes/

macrophages and dendritic cells). This would be confirmed

by the fact that cannabinoids induce apoptosis in Jurkat

T cells but not HL60 cells. Another factor that complicates

studies with the CB2 receptor is that Cnr2 has undergone

more rapid evolution than Cnr1, leading to pronounced

species differences in ligand–receptor interactions (receptor

affinities and G-protein recruiting)[97] and therefore efficacy
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in animal studies cannot always be extrapolated to humans.

There are still too many uncertainties to draw any conclusion

regarding cannabinoid treatment of lymphomas, despite

studies showing overexpression of the CB2 receptor.

Intriguingly, CB1 agonists can induce apoptosis in mantle

cell lymphoma via CB1 receptor activation,
[98] although this

was under conditions where the CB2 receptor is also

activated, as non-selective cannabinoids were used in this

study (Table 1; Figure 2). Moreover, CB2 receptor activation

leads to anticancer effects in other tissues. CB2 receptor

overexpression may contribute to the regression of human

anaplastic thyroid tumour in nude mice following inter-

leukin-12 gene transfer,[139] suggesting an inhibitory role of

CB2 in thyroid carcinogenesis. In vitro, Met-F-AEA was

shown to reduce thyroid tumour growth[79] and to induce

apoptosis in thyroid carcinoma cells.[140] Interestingly, 3,30

diindolmethane (DIM), which is an anticarcinogenic meta-

bolite generated by ingestion of indole-3-carbinol commonly

found in Brassica vegetables, has recently been shown to be

a weak partial CB2 receptor agonist.
[141] However, DIM has

other targets that may explain its anticancer effects, including

elastase.[142] Nonetheless, it is tempting to speculate that

dietary CB2 ligands such as beta-caryophyllene[72] and DIM

may exert potentially chemopreventive effects and inhibit

carcinogenesis via CB2 receptor interaction.

Anticancer effects of cannabinoids
independent of CB receptors

Not all effects of cannabinoids are mediated through classic CB

receptors, and there is an increasing amount of data showing

that many ligands are not specific for CB receptors. Often well-

designed protein-selective ligands are specific for a certain

target until their non-specificity is shown, rendering erroneous

initial conclusions drawn from pharmacological experiments.

This may also be true for CB receptor inverse agonists (i.e.

antagonists). Recently, it was shown that the CB1 selective

agonist SR141716A (rimonabant) also binds to GPR55[143] and

can act as GPR55 receptor antagonist.[144]A recent report using

a beta-arrestin Pathhunter assay showed that SR141716A and

AM251 induced significant effects via GPR55, while endo-

cannabinoids were only weakly active.[141] While the number

of CB1- and CB2-selective agonists and antagonists is

increasing, it is not clear whether these compounds exert

other cellular actions at the often high concentrations/doses

used (Table 1). Moreover, studies like the one performed on

the murine lymphomas L-4, LSA and P815 with D
9-THC

treatment may be hard to interpret, asD9-THC apparentlymore

strongly activates GPR55 than CB receptors,[143] the role of

which in cancer remains to be elucidated. Recently, it was

shown that GPR55 signals via Rho and activates nuclear factor

of activated T cells (NF-AT).[145] Because NF-AT signalling

plays a potential role in cancer growth (e.g. in Burkitt’s

lymphoma),[146] this certainly complicates the interpretation of

studies performed with cannabinoids without using knockout

mice as controls. In fact, the new cannabinoid-like receptor

GPR55 with signalling distinct from CB1 and CB2 may be a

hitherto neglected receptor with regard to the anticancer effects

of several cannabinoids. Many cannabinoids interact with

GPR55 and the receptor appears to be present in numerous cell

types.[4,14,143] GPR55 is activated by a whole range of plant,

synthetic and endogenous cannabinoids and is blocked by

cannabidiol, a non-psychoactive phytocannabinoid,[5,143] and

SR141716A.[144] Cannabidiol induces a concentration-depen-

dent increase in FAAH activity and 5-lipoxygenase activity in

U87 glioma cells, reducing the growth rate.[147] The most

striking difference reported so far is the agonist activity of the

CB1 receptor antagonists AM251 and AM281 at GPR55,[5,141]

rendering elucidative studies of CB receptor specificities a

challenging task. To date, nothing has been published about its

expression in cancer cells and therefore putative effects of

cannabinoids through GPR55 cannot be ruled out and deserve

further attention. Activation of GPR55 by AM251[125] could

also explain the observation that this drug exerts antiprolifera-

tive effects on pancreatic cancer cells in the low micromolar

range. Similarly, another article reported cell cycle arrest

in breast cancer cells treated with the CB1 antagonist

SR141716A,[148] an effect that could, at least in part, also be

mediated by interaction with GPR55.

TRPV channels, PPARg and 5HT(3) receptor are also

non-cannabinoid targets of cannabinoids.[13,149,150] Ananda-

mide and similar cannabinoid structures activate the vanilloid

receptor (VR1 or TRPV1), which can be blocked with the

TRPV1 antagonist capaszepine. In cervical cancer cells with

aberrant TRPV1 expression, the stimulation of TRPV1 rather

than CB1 or CB2 receptors accounts for the apoptosis-

inducing effects of anandamide,[101] whereas the migration-

reducing effects of R(+)-methanandamide could be blocked

by antagonists to TRPV1, CB1 and CB2, highlighting the

complexity of cannabinoid-evoked signal generation.[151]

Recently, De Petrocellis and colleagues suggested that

phytocannabinoids and cannabis extracts exert some of

their pharmacological actions by interacting with TRPA1

and TRPM8 channels, with potential implications for the

treatment of pain and cancer.[152]

Another well-described mechanism for CB-independent

action of certain CB receptor agonists is their binding to

some members of the nuclear receptor transcription factor

superfamily PPARs,[12,150] although the extent to which this

mechanism is involved in the effects of cannabinoids as anti-

tumour agents remains poorly described. Intriguingly, in the

HepG2 hepatoma cell line, PPARg may play a key role in

WIN 55,212-2-induced apoptosis.[138] The non-psychoactive

D
9-THC analogue ajulemic acid, which binds to the CB2

receptor, has been shown to exert antitumour effects in

glioma cells.[107] Interestingly, ajulemic acid is also an

activator of PPARg.[153]

In hormone-dependent breast and prostate carcinoma,

cannabinoid treatment can decrease expression levels of

receptors involved in their pro-proliferative response to the

cytokines prolactin, nerve growth factor (NGF) and andro-

gen.[69,129,154] Namely, in prolactin-dependent breast cancer,

2-AG and anandamide downregulate the prolactin receptor

and the trkNGF receptor, whereas in postate cancer, 2-AG,

anandamide and WIN-55,212-2 reduce levels of prolactin

and androgen receptors. In addition to these indirect prolifera-

tion-inhibiting effects, certain plant-derived and synthetic

cannabinoids inhibit the multidrug-transporter ABCG2 and

p-glycoprotein in mouse embryonic fibroblasts (MEF), immor-

talised renal cells, Caco-2 cells and rat brain microvessel cells,
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Table 1 Effects of cannabinoid receptor ligands on cancer cells in vitro and in vivo

Cancer Cell lines Effects Compound Reversible by

CB1/CB2 antagonists?

In vivo? Reference

Glioblastoma

multiforme

U251-MG and U87-MG Cell cycle inhibition D9-THC ? no Galanti et al. 2007[78]

SF126, U87, U251, U373-MG,

SF188, GBM primary cells

Cell death, reduced

proliferation

WIN-55,212-2, D9-THC SR1, SR2 no McAllister et al. 2005[99]

Glioma U87 ROS, apoptosis Cannabidiol no yes Massi et al. 2006[100]

C6, U87mg Apoptosis D9-THC SR1, SR2 yes Carracedo et al. 2006[50]

? Apoptosis AEA no? no Contassot et al. 2004[101]

C6 Cell death by oxidative stress D9-THC SR1 no Goncharov et al. 2005[102]

C6 Apoptosis WIN-55,212-2 no no Ellert-Miklaszewska

et al. 2005[82]

U87, U373 Anti-proliferative Cannabidiol SR2 no Massi et al. 2004[103]

H4 neuroglioma cells Apoptosis R-methanandamide no no Hinz et al. 2004[104]

C6 Anti-proliferative 1-AG, phosphate esters of anandamide no no Fowler et al. 2003[105]

C6 Apoptosis D9-THC no no Gomez del Pulgar et al. 2002[51]

C6 Anti-proliferative AEA, 2-AG, JWH-015, CP55,940 SR1/2, AM251, AM630,

capsazepine

no Jacobsson et al. 2001[106]

C6, U87mg Reduced viability Ajulemic acid SR2 yes Recht et al. 2001[107]

C6 Apoptosis D9-THC SR1 & SR2 combination yes Galve-Roperh et al. 2000[68]

C6 Apoptosis D9-THC SR1 no Sanchez et al. 1998[48]

C6 Apoptosis JWH-33 SR2 yes Sanchez et al. 2001[108]

C6 Inhibition of invasion, down-

regulation of MMP-2

D9-THC, JWH-133 no yes Blazquez et al. 2008[52]

U87-mg, T98G, LN-229, MT310 Reduced viability C10-phenyl-substituted D(8)-THC no no Krishnamurthy et al. 2008[109]

Neuroblastoma B102 Growth-inhibition D9-THC no no Cabral et al. 1987[110]

NB2A, (C6) Anti-proliferative D9-THC no no End et al. 1977[111]

Leukaemia Jurkat Apoptosis D9-THC SR1 & SR2 no Jia et al. 2006[77]

Jurkat, MOLT-4 Apoptosis Cannabidiol SR2 yes McKallip et al. 2006[112]

Jurkat Apoptosis D9-THC SR2 no Herrera et al. 2005[113]

Jurkat Apoptosis D9-THC no no Lombard et al. 2005[114]

EL-4, LSA, P815, Jurkat, Molt4 Apoptosis D9-THC, HU210,

anandamide, JWH-015

SR2 yes McKallip et al. 2002[115]

K562 Anti-proliferative D9-THC no no Dvilansky et al. 1984[116]

L1210 murine leukemia Anti-proliferative D8-THC no yes Tucker & Friedman 1977[117]

L1210 murine leukemia, Lewis lung

carcinoma

Inhibition of DNA synthesis D9-THC, D8-THC no yes Carchman et al. 1976[118]

Lymphoma Rec1, Jeko, JVM-2 Apoptosis WIN-55,212-2,

R(+)-methanandamide

SR1 & SR2 no Gustafsson et al. 2006[98]

MCL cells from biopsies Apoptosis WIN-55,212-2, anandamide no no Flygare et al. 2005[119]

Rec-1, MEL1, MEL2, Raji,

Namalwa, JEKO-1

Apoptosis R(+)-methandandamide SR1 & SR2 yes Gustafsson et al. 2008[120]

Lung cancer A549 and SW-1573 Growth inhibition, anti-

angiogenic, anti-migration

D9-THC no yes Preet et al. 2008[70]

(Continued)
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Table 1 (Continued)

Cancer Cell lines Effects Compound Reversible by

CB1/CB2 antagonists?

In vivo? Reference

Lewis lung carcinoma Anti-proliferative D9-THC, D8-THC, cannabidiol no no Friedmann 1977[121]

Lewis lung adenocarcinoma cells Anti-proliferative D9-THC no no White et al. 1976[122]

L1210 murine leukemia, Lewis lung

carcinoma

Inhibition of DNA synthesis D9-THC, D8-THC no yes Carchman et al. 1976[118]

Lewis lung adenocarcinoma cells Reduced tumour growth D9-THC, D8-THC, cannabinol no yes Munson et al. 1975[44]

Colon cancer SW480, HCT15 Apoptosis D9-THC AM251 no Greenhough et al. 2007[65]

? Cell death Anandamide no no Patsos et al. 2005[123]

CaCo-2, DLD-1 Anti-proliferative 2-AG, anandamide, HU210 SR1 & SR2 no Ligresti et al. 2003[124]

DLD-1, HT29, primary human tumor Apoptosis via ceramide ACEA, CB13 no no Cianchi et al. 2008[54]

CaCo-2 Anti-proliferative, reduced

viability

HU-210, anandamide, NAGly no no Gustafsson et al. 2008[120]

Pancreatic cancer MiaPaCa, Panc-1 Apoptosis D9-THC, WIN-55,212-2, JWH-133 SR2 yes Carracedo et al. 2006[74]

MiaPaCa2 Apoptosis ACEA, AM251, JWH-015, AM630 no no Fogli et al. 2006[125]

Breast cancer MDA-MB-231, T47D and MCF-7 Cell cycle arrest, lipid rafts

critically involved

SR141716 no no Sarnataro et al. 2006[126]

EVSA-T, MCF-7, MDA-MB-468,

MDA-MB-231, SKBr3, T47D

Cell cycle block, apoptosis D9-THC SR1, better SR2 no Caffarel et al. 2006[84]

HBcc Anti-proliferative Anandamide no no De Petrocellis et al. 2002[127]

HBcc Anti-proliferative PEA + anandamide SR2 no Di Marzo et al. 2001[128]

HBCC, DU145 Anti-proliferative, PRL/NGF

receptors#

Anandamide, 2-AG, HU210 SR1 no Melck et al. 2000[129]

MCF-7 Anti-proliferative, PRL/NGF

receptors#

Anandamide SR1 no Melck et al. 1999[69]

EFM-19 Anti-proliferative Anandamide SR1 no Bisogno et al. 1998[130]

EFM-19, MCF7 Anti-proliferative Anandamide, 2-AG, HU210 SR1 no De Petrocellis et al. 1998[131]

Prostate cancer LNCaP Apoptosis WIN-55,212-2 SR1 SR2 yes Sarfaraz et al. 2006[66]

DU145, LNCaP, PC-3 Apoptosis WIN-55,212-2 SR1, SR2 yes Sarfaraz et al. 2005[132]

DU145, LNCaP, PC-4 Cell death Anandamide SR1 no Mimeault et al. 2003[133]

PC-3 Cell death Anandamide no no Sarker et al. 2003[134]

HBCC, DU145 Anti-proliferative, PRL/NGF

receptors#

Anandamide, 2-AG, HU210 SR1 no Melck et al. 2000[129]

PC3 Apoptosis D9-THC no no Ruiz et al. 1999[135]

Cervix carcinoma CC299, Caski, HeLa Apoptosis Anandamide VR1 inhbition no Contassot et al. 2004[101]

Melanoma B16, A375 Apoptosis, anti-angiogenic WIN-55,212-2, D9-THC, JWH-133 SR2 yes Blazquez et al. 2006[67]

Skin tumour PDV.C57, HaCa4 Apoptosis, anti-angiogenic WIN-55,212-2, JWH-133, D9-THC SR1 & SR2 yes Casanova et al. 2003[85]

Thyroid cancer KiMol, TK-6 Growth inhibition Met-F-anandamide SR1 yes Portella et al. 2003[79]

Thymoma ? ROS, apoptosis Cannabidiol no no Lee et al. 2008[136]

Cholangiocarcinoma Mz-ChA-1, HuH28, HuCC-T1, SG231 Apoptosis (FAS to lipid raft) Anandamide no no DeMorrow et al. 2007[137]

Hepatoma HepG2 Apoptosis WIN-55,212-2 GW9662 & T00709007

(PPARg)

no Giuliano et al. 2009[138]

GBM, glioblastoma multiforme; NGF, nerve growth factor; PPAR, peroxisome proliferator-activated receptor; PRL, prolactin; ROS, reactive oxygen species; SR1, SR141716A (selective CB1 receptor

antagonist/inverse agonist); SR2, SR144528 (selective CB2 receptor antagonist/inverse agonist); THC, tetrahydrocannabinol.
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which potentially contribute to sensitisation to and accumula-

tion of chemotherapeutic agents such as topotecan and

doxorubicin.[155–159]

Is elevation of endocannabinoid levels
in tumours good or bad?

There is good evidence that certain tumour cells overexpress

endocannabinoids, which are typically released during cellular

stress (e.g. upon activation of Toll-like receptor pathways).

For example, in colon tissue anandamide levels are signifi-

cantly upregulated after malignant transformation.[160] Since

endocannabinoids activate both CB1 and CB2 receptors, they

could initiate the anticancer signalling pathways described

above. This leads to the obvious question of why a growing

tumour should kill itself by such a mechanism? It has

previously been postulated that endocannabinoid tone may be
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Figure 2 Cannabinoid receptor ligands commonly used in the study of the anticancer effects. The binding selectivity towards CB1 and CB2

receptors is indicated in square brackets. ns, non-selective; THC, tetrahydrocannabinol.
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a means of controlling endogenous tumour growth (reviewed

by Flygare & Sander[42]). However, despite data from several

studies showing anticancer effects mediated by the endogen-

ous ligands anandamide and 2-AG (either directly or by

increasing their levels by blocking degradation or transport), it

is still not clear whether the ECS is an endogenous anticancer

or a procarcinogenic system. The latter was proposed in a

study using knockout mice, in which CB1/CB2 receptors were

suggested to play a positive role in UV-induced inflammation

and development of skin cancer; the study showed that in the

skin UVB activates nuclear factor kB via CB receptors,

leading to increased TNF-a expression.[161] As cannabinoids

at low concentrations typically inhibit TNF-a expression from

immune cells,[20,24] this seems to be rather contradictory.

However, several lines of evidence suggest that the ECS in the

skin is different from the ECS in the rest of the body, and that

CB2 receptor agonists seem to be pro-inflammatory in the

skin.[20,28] Somewhat contradictorily, CB receptor activation

in melanoma has been shown to reduce tumour growth via

AKT signalling.[67] A report by Aguado and colleagues on

glioma stem-like cells showed that cannabinoids such as

HU210 and JWH-133 cause higher expression of glial

differentiation markers in a CB1 and CB2-dependent manner,

respectively.[162] Upon engraftment of these more differen-

tiated cells into mice, a lower rate of gliomagenesis was

observed than in engrafted control cells, suggesting a potential

inhibitory role for CB receptor agonists in cancer stem cell

differentiation. The CB2 receptor agonists JWH133 and D
9-

THC were able to inhibit glioma cell invasion in mice,

probably due to down-regulation of metalloproteinase-2

expression.[52] A recent study suggests that high CB1 receptor

expression is associated with severity of prostate cancer and

outcome.[163] Obviously, the role of the ECS system is not

clear, and it is likely that different tissues employ the ECS

differently. While for many tissues (central nervous system,

liver, gut, arteries, etc.) it may be beneficial to activate the

ECS, other tissues may develop pathologies (adipose tissue,

skin). As pointed out in a recent review by Di Marzo,[20]

endocannabinoids may be able to act in opposite directions

depending on the physiological context. Furthermore, physio-

logical processes are dynamic whereas experiments often look

at single time points rather than the overall kinetics. This

makes the development of new cannabinoid therapeutics a

challenging task. With regard to cancer, it needs to be

emphasised that CB receptor expression in cancer cells has

largely been determined at the level of mRNA expression and

by Western blots,[67,120,154] which does not allow for the fact

that surface expression may vary and may not correlate with

gene expression. Unpublished data from our laboratory clearly

indicate that many cancer cells lack CB surface expression

despite being positive in RT-PCR and Western blot analyses.

Thus, studies ignoring the fact that CB receptors are probably

not coupled to G-proteins in many cancer cell lines may lead

to potentially erroneous conclusions.

In spite of the vast number of publications supporting the

use of cannabinoids as anticancer agents, it should be noted

that there are some potential not insignificant drawbacks,

such as the apparently prosurvival effects of cannabinoids

at low concentrations in cancer cells and their potential

immunosuppressive action (vide supra). Apparently,

nanomolar concentrations of D
9-THC, comparable with

those detected in the serum of patients after administration

of D9-THC, accelerate proliferation of cancer cells instead of

inducing apoptosis.[64] The same observation also holds true

for the in-vitro incubation of several cancer cell types with

WIN55,212-2 and HU210, an effect that was attributed to

transactivation of the EGFR, leading to activation of the

AKT and MAPK signalling pathways.[64] In this regard, the

use of cannabis as it is already approved as an adjuvant to

chemotherapeutic treatment regimens[164,165] could poten-

tially boost tumour growth, although clinical evidence for

this hypothesis is lacking.

The second critical point relates to the fact that D9-THC

potentially alters the immune status by suppressing the cell-

mediated TH1 response, which is of particular relevance in

the battle against tumour cells.[166] Since TNF-a expression

is typically inhibited by low cannabinoid concentrations and

TNF-a itself inhibits tumour growth,[167] it is not clear what

the effect of cannabinoids on physiological tumour develop-

ment is. On the other hand, a pro-inflammatory environment

can lead to carcinogenesis[167,168] and cannabinoids may be

able to prevent this. Two recent studies have shown that loss

of CB1 led to an increase in carcinogenesis in colon

cancer[169] and enhanced endocannabinoid tone prevented

colon cancer,[170] thus pointing to a suppression of colon

carcinogenesis by the ECS and CB1 receptor. Moreover, the

CB2 receptor has been suggested to exert beneficial

regulatory effects in the gut, such as attenuation of

inflammation and probably colon cancer.[35] With the

commonly used xenograft animal models, where human

cancer cells are grafted into immunodeficient mice, it is

impossible to predict the impact of the cannabinoid treatment

on the immune surveillance of the tumour; data from a

melanoma allograft model suggest that the inhibitory effects

on tumour growth and formation may be independent of

immune status of the mice and site of drug injection.[67]

Conclusions and outlook

Cannabinoids may have anticancer effects in the appropriate

context but their effects may not be sufficiently radical for

chemotherapy. Currently, D9-THC (Marinol) and the syn-

thetic derivative Nabilone are successfully used as adjuvants

to chemotherapeutic treatment because they prevent nausea

and vomiting and stimulate appetite.[22,165] Moreover, the

D
9-THC- and cannabidiol-containing C. sativa extract

Sativex is used for the symptomatic relief of neuropathic

pain in adults with multiple sclerosis and as an adjunctive

analgesic treatment for adults with advanced cancer.[164,171]

Currently, there are no clinical data indicating that co-

treatment with these cannabinoids improves or reduces the

anticancer efficacy of the actual chemotherapeutic agents.

Such clinical comparisons would be very interesting. Based

on current knowledge, the ECS may be a system that, under

the appropriate conditions, produces synergy with estab-

lished chemotherapeutic agents. In vitro, subcytotoxic

concentrations of D9-THC were shown to sensitise leukae-

mia cells to chemotherapeutic agents such as doxorubicin

and vincristine.[172] Several other reports have dealt with the

potential synergism of cannabinoids with chemotherapeutic
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agents such as topotecan and doxorubicin.[50,75,155–159]

Clearly, more research should be directed towards the

potential synergism and antagonism of cannabinoids in

chemotherapy. Despite several promising reports from

studies with cannabinoids in animal xenograft models, data

relating to humans are limited and therapeutic benefits

therefore remain speculative. Moreover, there are numerous

apparently non-toxic natural products that potentially exert

chemopreventive or antitumour effects, many of which have

been confirmed in animal models,[173] but few have been

tested in a clinical setting. This is largely because of limited

financial resources and the high risk for a pharmaceutical

company to become involved in clinical studies with known

natural products in general and cannabinoids in particular.

While data obtained in different cellular and animal models

suggest that cannabinoid ligands could be useful to treat certain

forms of cancer, the abundance of CB receptors in different

tissues could clearly be a problem with regard to potentially

unwanted effects. However, based on a recent review,[174]

cannabinoids appear to be selective antitumour agents that kill

glioma cells without affecting the viability of non-transformed

counterparts. Intriguingly, they mention a pilot clinical trial on

patients with glioblastoma multiforme which showed remark-

able antitumour effects of cannabinoids and a good safety

profile, thus setting the basis for further studies.

Interestingly and somewhat surprisingly, most studies to

date have been carried out with ligands that target both CB1

and CB2 receptors in a non-selective manner. In terms of a

potential therapeutic application the unwanted psychotropic

effects mediated via CB1 could be problematic. However,

there is still a limited amount of data on CB2-receptor-

selective anticancer effects (by agonists, silent antagonists or

inverse agonists) and the potential therapeutic relevance

remains unclear. Given that the CB2 receptor mediates

several of the effects reported for CB1 without being

psychotropic, more research should be directed to the role

of CB2 in cancer. Future studies using CB1- and CB2-

selective ligands in combination with animal models in

which CB receptors have been genetically deleted should be

useful. Importantly, conclusions drawn from experiments

with CB receptor antagonists may be misleading because

these ligands potentially interact with other targets, such as

the CB1 receptor inverse agonists (antagonists) SR141716A

and AM251 with GPR55 (vide supra).

Maybe more promising is the potential of the ECS in

the suppression of cancer development. It is tempting to

speculate that the ECS is involved in carcinogenesis and

tumourigenesis in certain tissues, as it potentially modulates

the biochemical microenvironment, probably leading to

modulation of cytokines and growth factors. To provide

stronger evidence, future research will have to uncover

potential ways of chemoprevention by cannabinoids. Given

that the ECS regulates immune processes, it is tempting to

believe that the ECS can directly affect carcinogenesis by

modulating inflammatory stress that leads to carcinogenesis.

More than 10 years ago, Sidney and colleagues[175]

concluded that not only is the evidence linking cannabis

smoking to cancer negative, but the largest human studies

cited indicated that cannabis users had lower rates of cancer

than non-users. Moreover, those who smoked both cannabis

and tobacco had lower rates of lung cancer than those who

smoked only tobacco – a strong indication of chemopreven-

tion. However, this statement was recently challenged by a

study performed by Aldington and colleagues,[176] which

showed that cannabis smoking increased the risk for lung

cancer, but it is not certain that cannabinoids are responsible

for this correlation.[177] Along the same lines, it is not clear

whether chronic marijuana use is correlated with an

increased incidence of testicular germ cell tumours[178]

because of cannabinoid action. An increasing amount of

data shows attenuation of tumour growth by both orally

and locally administered cannabinoids in different animal

models, raising high hopes for potentially new treatments, in

particular in combination with established chemotherapeutic

agents (vide supra). Future research along that line will have

to show whether cannabinoids or cannabimimetic agents may

reduce tumour growth in vivo synergistically when used with

chemotherapeutic agents. Meanwhile, the exact mode of

action of cannabinoids, the role of classic CB receptors, and

the potential involvement of GPR55 and the other non-

cannabinoid targets remain to be elucidated. In conclusion, a

better understanding of the underlying physiological pro-

cesses of the ECS in malignancy is needed before anticancer

agents that act via the ECS can be developed (Figure 3).
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