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Exposure to A9-tetrahydrocannabinol during rat pregnancy
leads to impaired cardiac dysfunction in postnatal life

Kendrick Lee', Steven R. Laviolette? and Daniel B. Hardy'"

BACKGROUND: Cannabis use in pregnancy leads to fetal growth restriction (FGR), but the long-term effects on cardiac function in
the offspring are unknown, despite the fact that fetal growth deficits are associated with an increased risk of developing postnatal
cardiovascular disease. We hypothesize that maternal exposure to A9-tetrahydrocannabinol (A9-THC) during pregnancy will impair
fetal development, leading to cardiac dysfunction in the offspring.

METHODS: Pregnant Wistar rats were randomly selected and administered 3 mg/kg of A9-THC or saline as a vehicle daily via
intraperitoneal injection from gestational days 6 to 22, followed by echocardiogram analysis of cardiac function on offspring at
postnatal days 1 and 21. Heart tissue was harvested from the offspring at 3 weeks for molecular analysis of cardiac remodelling.
RESULTS: Exposure to A9-THC during pregnancy led to FGR with a significant decrease in heart-to-body weight ratios at birth. By
3 weeks, pups exhibited catch-up growth associated with significantly greater left ventricle anterior wall thickness with a decrease
in cardiac output. Moreover, these A9-THC-exposed offsprings exhibited increased expression of collagen | and Ill, decreased matrix
metallopeptidase-2 expression, and increased inactivation of glycogen synthase kinase-3, all associated with cardiac remodelling.

CONCLUSIONS: Collectively, these data suggest that A9-THC-exposed FGR offspring undergo postnatal catch-up growth
concomitant with cardiac remodelling and impaired cardiac function early in life.
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IMPACT:

® To date, the long-term effects of perinatal A9-THC (the main psychoactive component) exposure on the cardiac function in the

offspring remain unknown.

® We demonstrated, for the first time, that exposure to A9-THC alone during rat pregnancy results in significantly smaller hearts

relative to body weight.

® These A9-THC-exposed offsprings exhibited postnatal catch-up growth concomitant with cardiac remodelling and impaired

cardiac function.

® Given the increased popularity of cannabis use in pregnancy along with rising A9-THC concentrations, this study, for the first
time, identifies the risk of perinatal A9-THC exposure on early postnatal cardiovascular health.

INTRODUCTION

Cannabis is the most consumed illicit drug in the world with
~140 million users worldwide." Among pregnant women in North
America, recent studies report that up to 7% use cannabis during
pregnancy and ~5% consume it while nursing.? Moreover, these
numbers are expected to rise with the legalization of cannabis in
Canada and many parts of the United States.> Many use cannabis
given the common perception that it mitigates anxiety, depression,
and nausea while posing no risk to the baby.*™® This is concerning
given that there are currently three systemic reviews that suggest
cannabis consumption during pregnancy leads to low-birth-weight
outcomes.”® However, these studies are confounded by socio-
economic status (SES) and the fact that women tend to co-
medicate (i.e., tobacco) during pregnancy.'® To date, we and others
have demonstrated that exposure (oral, intraperitoneal (i.p.),
intravenous (i.v.), or inhalation) to A9-tetrahydrocannabinol

(A9-THC), the main psychoactive component of cannabis, in
pregnancy can lead to placental insufficiency and fetal growth
restriction in the rat;''"'® however, the long-term cardiometabolic
effects are unknown. This is of great interest considering that low
birth weight offspring is associated with long-term cardiovascular
disease."”

A9-THC natively interacts with the endocannabinoid system,
which is composed of two receptors, cannabinoid receptor type 1
and 2 (CB1R and CB2R). In the central nervous system (CNS), the
endocannabinoid system mediates appetite, mood, pain, and
memory.'® Although traditionally only recognized in the CNS,
more recently CB1R and CB2R have been localized in peripheral
tissues such as the liver, adipose, pancreatic, cardiac, placental,
and immune tissue, suggesting that cannabinoids may exert its
effects outside the CNS."?% A9-THC can also directly exert its
effect via the endocannabinoid system on fetal tissues as it has
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been found to cross the human placenta and can concentrate 2-5
times higher in fetal tissues compared to that in maternal
tissues.?**° In addition, due to selective breeding of cannabis
strains, the concentration of A9-THC has increased from 4 to 12%
in the past two decades.®' This is concerning as A9-THC could
exert direct effects on fetal development. For example, in isolated
neonatal cardiomyocytes, CB1R agonists can impair cardiomyo-
cyte size during development.?® Conversely, CB1R antagonists
have been shown to prevent cell death in embryonic cardiomyo-
cytes.®? Collectively, this suggests that in addition to its proposed
role to reduce placental efficiency and fetal development,
exposure to A9-THC could also have direct detrimental effects
on the developing heart. Therefore, in this present study, we
investigated if low-birth-weight offspring exposed to A9-THC
in utero exhibited defects in functional cardiac outcomes in
postnatal life.

MATERIALS AND METHODS

A9-THC animal model

All animal procedures were conducted in accordance with the
guidelines and standards of the Canadian Council on Animal Care.
Animal Use Protocol (AUP #2019-126) was approved and post-
approval monitoring was conducted by the Western University
Animal Care Committee. All investigators understood and
followed the ethical principles outlined by Grundy,* and the
study design was informed by ARRIVE (Animal Research: Reporting
of In Vivo Experiments) guidelines.>* Time-pregnant Wistar rat
dams were purchased from Charles River (La Salle) and were
maintained at 22 °C on a 12:12-h light-dark cycle with access to
food and water ad libitum throughout the experimental proce-
dure. Dams arrived at the animal facility at gestational day (GD) 3
and were left to acclimatize for 3 days. From there, animals were
randomly assigned to a treatment group and administered 3 mg/
kg of A9-THC (N =28) or saline as a vehicle (N=8) daily via i.p.
injection from GD 6 to 22 (birth), as we have previously
performed."" This dose was selected as it results in a plasma
concentration range in rodents (8.6-12.4 ng/mL) similar to that of
human (13-63 ng/mL) cannabis smokers (using 6% A9-THC).>*~3’
We avoided the oral route considering it has poorer bioavailability
and slower adsorption with food along with the fact that edibles
are the least popular route of cannabis consumption in pregnant
women.333? In utero exposure to A9-THC earlier than GD 6 has
been shown to result in spontaneous abortions in rats3®
Previously, we and others have demonstrated that this dose and
route of A9-THC administration does not alter maternal outcomes
or lead to fetal demise.'"'33>4%*! For both treatment groups,
pups were culled to 8 pups/mothers (4 males, 4 females) to ensure
standardized postnatal nutrition. At birth, male and female hearts
were harvested and weighed from culled pups. The remaining
pups were studied longitudinally by echocardiography (echo) at
postnatal days 1 (PND1) and 21 (PND21). For the purposes of this
study, male offsprings were exclusively selected to avoid
confounding effects presented by the female estrus cycle and to
reduce costs associated with echoes. After the echoes, pups were
sacrificed using an overdose of pentobarbital (100 mg/kg) i.p. for
heart tissue collection and flash-frozen in liquid N, for molecular
analysis.

Echocardiographic assessment of cardiac function

The Vevo2100 Ultrasound Imaging System was employed to
obtain two-dimensional echocardiographic footage in parasternal
short axial (M-mode) and long axial (B-mode) views using a 40
MHz linear transducer. Animals were sedated using isoflurane
throughout the duration of the echoes . Heart rate was measured
using electrode probes on the extremities and body temperature
was monitored using a rectal probe. Real-time images obtained in
the short axial view were used to measure left ventricular interior
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diameter (LVID) and posterior (LVPW) and anterior wall thickness
(LVAW) at systolic and diastolic contraction. Using M-mode and B-
mode, estimates were made for stroke volume, ejection fraction,
fractional shortening, and cardiac output.

RNA extractions and real-time RT-qPCR

Total RNA was extracted from whole-heart rat tissue in TRIzol
reagent (Invitrogen, Carlsbad, CA) for 30 s and then subsequently
homogenized using a homogenizer. Chloroform (Sigma-Aldrich,
St. Louis, MO) was added, shaken, and then centrifuged at 12,500
r.p.m. at 4 °C for 15 min. Approximately 500 mL of the supernatant
was taken and mixed with equal volumes of isopropyl alcohol and
chilled at —20 °C for 20 min. The solution was then centrifuged for
15 min and the supernatant was decanted and the pellet of RNA
was retrieved and washed with ethanol. After washing, the pellet
was dissolved in DEPC (diethylpyrocarbonate)-treated water and
quantified using Nanodrop 2000 (Thermo Fisher Scientific,
Waltham, MA) and diluted to 2 pg of RNA. Using Superscript |l
Reverse Transcriptase Kit (Invitrogen), 2 ug of RNA was reverse-
transcribed to make complementary DNA (cDNA). cDNA was
diluted 1:40. Primer sets for Collagen 1 (NM_053304.1: forward 5'-
GTACATCAGCCCAAACCCCA-3’; reverse 5-TCGCTTCCATACTCGAA
CTGG-3') Collagen 3 (NM_032085.1: forward 5-GAAAGGTGAAAT
GGGTCCAGC-3’; reverse 5-CTTTGCTCCATTCTTGCCCG-3'), B-actin
(NM_031144: forward 5'-CACAGCTGAGAGGGAAAT-3/; reverse
5-TCAGCAATGCCTGGGTAC-3'), and GAPDH (glyceraldehyde 3-
phosphate dehydrogenase) (NM_017008.4: forward 5'-GGATACTG
AGAGCAAGAGAGAGG-3'; reverse 5-TCCTGTTGTTATGGGGTCTG
G-3) in the rat were designed using the National Center for
Biotechnology Information and Ensemble genome browsers,
followed by generation via Invitrogen Custom DNA Oligos. SsoFast
Eva green supermix (Bio-Rad) and Bio-Rad CFX384 Real-Time
System were used with cyclic conditions set at 95 °C for 10 min,
followed by 43 cycles of 95 °C for 15 s and 60 °C for 30 s and 72 °C
for 30 s. Relative messenger RNA (mRNA) abundance obtained for
all target genes of interest was normalized to geometric means of
B-actin and GAPDH. B-Actin and GAPDH were determined to be
suitable housekeeping genes by using both the comparative delta
Ct method and algorithms from geNorm, Normfinder, and
BestKeeper.**** Primer efficiency was determined to be equal
for all primer sets, and ACt values for each primer were calibrated
to experimental samples with the lowest transcript abundance
(highest Ct value). Relative transcript abundance was then
calculated for each primer set as determined by the formula
2AACt, where AACt was the normalized value.

Protein extraction and Western blot

Total protein from whole hearts was extracted by homogenization
in a RIPA buffer solution (50 mM Tris-HCI, pH 7.4, 150 mM Nadcl, 1
mM EDTA, 1% Nonidet P40, and 0.25% Cy4H39NaO,4, with protease
inhibitor cocktail (Roche, Basel, Switzerland)) with phosphatase
inhibitors (40 mM NasVO,, 40 mM Na-pyrophosphate 20 mM NaF,
and 200 mM B-glycerophosphate disodium salt hydrate). Heart
cells were further lysed by sonicating the solution for five, 1-s
pulses at 30% amplitude and then subsequently mixed using a
rotator for 10 min at 4 °C. The solution was then centrifuged for 15
min at 4 °C. The supernatant was collected and aliquoted as total
protein and then quantified using a Lowry Protein Assay Kit (Bio-
Rad, Hercules, CA). Once quantified, loading mixes were prepared
by diluting proteins to 20 pg/well and mixed with NuPAGE
Reducing Agent (10x) (Invitrogen), NUPAGE LDS Sample Buffer
(4x) (Invitrogen), and deionized water. Protein samples were
heated at 70°C for 10 min to denature the proteins and were
separated by gel electrophoresis using a gradient gel (Novex,
Thermo Fisher Scientific). Gels were then transferred using
polyvinylidene difluoride membranes (Millipore, Billerica, MA).
Membranes were flooded with Ponceau S and shaken for 1 min
and then imaged for total protein abundance using a ChemiDoc
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Gestational exposure to A9-THC leads to decreased heart weights at birth followed by postnatal catch-up growth at 3 weeks.

a, b Body weights, ¢, d heart-to-body weight ratios. All values are expressed as means + SEM, an average of 4 pups/dam from N = 7-8 dams/
group (i.e, N =1 represents pups from a single dam). Significant differences between groups were determined using Student’s unpaired t test

(*p < 0.05, **p < 0.001).

Imager (Bio-Rad). Membranes were blocked in 5% non-fat milk or
5% bovine serum albumin (in 1x TBST). Membranes were then
probed overnight with primary antibodies (in blocking agent):
collagen | (1:1000 dilution, Abcam, #ab34710, Cambridge, MA),
collagen 1l1A1 (1:500 dilution, Santa Cruz, sc-271249, Santa Cruz,
CA), matrix metalloproteinase-2 (MMP-2) (1:1000 dilution, Cell
Signalling Technologies, #87809, Beverly, MA), phosphorylated
glycogen synthase kinase-33 (GSK-38) [serine 9A] (1:1000 dilution,
Cell Signalling Technologies, #9336), and total GSK-3( (1:1000
dilution, Cell Signalling Technologies, #12456). Horse anti-mouse
(1:10,000 dilution, Cell Signalling Technologies, #7076P2) and goat
anti-rabbit  (1:10,000 dilution, Cell Signalling Technologies,
#7074P2) secondary antibodies were diluted in the blocking
solution and rotated at room temperature for 1 h. Immunoreactive
bands were detected using Super Signal West Dura Chemilumi-
nescent Substrate (Thermo Fisher Scientific) and imaged using a
ChemiDoc Imager (Bio-Rad). Relative band density was normalized
to total protein using 0.1% Ponceau and quantified using the
Image Lab software, as we have previously published.**

Statistical analysis

To avoid litter bias, offspring were taken from separate litters (i.e.,
N=1 represents pups from a single dam) to achieve N=7-8/
group from each of the time points (birth and PND21). This sample
size of 7-8 offspring per sex per age group per treatment was
chosen based on achieving a statistically significant difference
with an expected standard deviation of 15% or less, based on our
previous studies.**¢ All analyses were completed with GraphPad
8 Prism software using a Student’s unpaired t-test. Values depicted
are mean + SEM and considered significant if p < 0.05. Grubb's test
was employed to determine outliers.

RESULTS

In utero exposure to A9-THC leads to fetal growth deficits and
postnatal catch-up growth

To determine if A9-THC exposure in utero impedes fetal growth
and compromises heart development, offspring that were
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exposed to either vehicle or 3 mg/kg/day of A9-THC ip. from
GD 6 to parturition were measured for body weights and heart-
to-body weight ratios at birth. It should be noted that in this same
cohort of vehicle and A9-THC offspring, we have published that
exposure to A9-THC in pregnancy did not lead to changes in
maternal food intake, maternal weight gain, litter size or
gestational length.'!' At birth, male and female offspring
exhibited significantly decreased body weights (Fig. 1a, p < 0.05)
and heart-to-body weight ratios (Fig. 1¢, p <0.01). The range in
birth weight for our offspring was 54-93g and the 10th
percentile birth weight was 59g. Male and female offspring
body weights or heart-to-body weight ratios were not different
from each other in either experimental group. At 3 weeks of age,
these measurements were also followed up to assess postnatal
catch-up growth. Three-week-old male A9-THC-exposed offspring
caught up in growth relative to the vehicle control group (Fig. 1b).
Heart sizes relative to body weights also recovered by 3 weeks
(Fig. 1d).

In utero exposure to A9-THC leads to increased heart rate
concomitant with decreased stroke volume at birth

To assess the effects of A9-THC on the cardiac function of the
offspring, echo measurements were taken in postnatal life. At
birth, there was a significant 25% increase in heart rate followed
by a compensatory decrease in stroke volume, which resulted in
no significant differences in cardiac output (p < 0.01, Table 1). All
other hemodynamic parameters (i.e., fractional shortening,
ejection fraction, and cardiac output) and ventricular wall
thicknesses (i.e, LVAW and LVPW) were normal relative to vehicle
controls.

Three-week-old offspring exposed to A9-THC in utero exhibit
adverse myocardial structure and function

Given that our male 3-week-old offspring exhibited postnatal
catch-up growth, which is associated with an increased risk of
cardiovascular disease,*”*® we further measured cardiac func-
tional outcomes. Echo analysis (Fig. 2) revealed that 3-week-old
offspring exposed to A9-THC exhibited morphological changes
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Table 1. Cardiac functions of offspring at birth exposed to 9-THC
throughout gestation.

Parameter Vehicle (N=8) A9-THC (N=28) P value
Heart rate (b.p.m.) 223.7 £ 15.69 290.1 +3.690**  0.0062
Stroke volume (pL) 14.70 + 1.041 8.933 +£0.3027** 0.0018
Cardiac output (mL/ 3.325+0.4601 2.588+£0.06122 0.1636
min)

Ejection fraction (%) 67.09+5.274 65.46 + 1.894 0.7800
Fractional 31.22 £ 4.660 25.09+2619 0.2955
shortening (%)

LVAW; systole (mm) 0.8075+0.09196 0.8425+0.05921 0.7598
LVAW; diastole (mm) 0.4975+0.07146 0.4850+0.04481 0.8870
LVPW; systole (mm) 0.9450 £ 0.1031 1.075+£0.1270  0.4571
LVPW; diastole (mm) 0.6750+0.1017 0.7700+0.09065 0.5117
LVID; systole (mm) 1.493\ £ 0.2001 1.378 £0.06156 0.6026
LVID; diastole (mm) 2.538 £ 0.1045 2395+0.1008 0.3643

All values are expressed as means + SEM, N =8 pups/group (each pup was
taken from a different dam’s litter). Student’s unpaired t test was used for
analysis.

**Significant differences at p <0.01 between vehicle and A9-THC. LVAW,
left ventricular anterior wall; LVID, left ventricular interior diameter; LVPW,
left ventricular posterior wall. All animals were measured at postnatal
day 1.

such as thicker anterior left ventricular wall thickness, most
noticeable during systolic contraction (p <0.05, Table 2). The
LVPW; diastole, although nonsignificant, was also trending
towards increased thickness. There were no other significant
changes in other functional parameters and the diameter of the
left ventricular chamber at systole and diastole. However, while
3-week-old offspring exposed to A9-THC exhibited no changes
in heart rate, there was a significant 20% decrease in stroke
volume (p<0.05, Table 2). Moreover, this culminated in a
significant 20% decrease in cardiac output (p < 0.05, Table 2).

Three-week-old offspring exposed to A9-THC in utero exhibit
increased markers of cardiac remodelling along with greater
cardiac collagen content

Given that exposed offspring exhibited postnatal catch-up
growth, which can be associated with increased risk of
developing cardiovascular disease and remodelling,***° we
next sought to elucidate the underlying molecular changes
previously associated with cardiac hypertrophy (e.g., GSK-3p).
We also wanted to examine whether markers for fibrosis
(i.e., collagen | and Ill and GSK-3B) were upregulated since it
has been associated with the development of cardiac hyper-
trophy.>’ We observed significant increases in steady-state
mRNA transcript abundance for collagen Il (Fig. 3b; p <0.05)
and a modest increase in collagen | (Fig. 3a). We then
investigated whether this led to changes in protein expression.
We found that A9-THC-exposed offspring exhibited increased
protein expression of collagen | and llI (Fig. 3¢, d; p < 0.05). This
was further supported by a decrease in protein expression of
MMP-2, involved in the breakdown of collagen (Fig. 3f; p < 0.01).
Given the links between elevated collagen and GSK-3f3, we next
wanted to determine whether there would be an inactivation of
GSK-3B, which results in cardiac hypertrophy and fibrosis in
rodents when inactivated (phosphorylated at S9A) or knocked
out.>%53 Interestingly, we saw a significant increase in the ratio
of inactivated (phosphorylated) GSK-3f to total GSK-3f in the
A9-THC-exposed groups (Fig. 3e).
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Fig. 2 Representative echocardiogram from 3-week vehicle and
3-week-old rat offspring exposed to A9-THC. All animals were
measured at postnatal day 21. LVAW left ventricular anterior wall,
LVID left ventricular interior diameter, LVPW left ventricular posterior
wall, d diastole, s systole.

Table 2. Cardiac function of offspring at 3 weeks exposed to 9-THC
throughout gestation.

Parameter Vehicle (N=8) A9-THC (N=8) P value
Heart rate (b.p.m.) 418.6£9.136 419.0+£7.415 0.9710
Stroke volume (pL) 1493 £5.720 122.3+£10.36* 0.0387
Cardiac output (mL/min) 62.23+1.779 50.02 + 4.476* 0.0235
Ejection fraction (%) 82.42 +2.376 80.37+1.728 0.4974
Fractional shortening (%) 43.57 +3.927 36.03 +5.864 0.3033
LVAW; systole (mm) 2.160+£0.08422 2.564+0.1590* 0.0417
LVAW; diastole (mm) 1.386+0.08187 1.583+0.1117 0.1768
LVPW; systole (mm) 2.088+0.3024 2.333+0.2803 0.5625
LVPW; diastole (mm) 1.528+0.1429  1.949+0.1952  0.1038
LVID; systole (mm) 2.593+0.1284 2.393+0.1068 0.2513
LVID; diastole (mm) 5201 £0.06238 5.006+0.1441  0.2357

All values are expressed as means + SEM, N = 8 pups/group (each pup was
taken from a different dam’s litter). Student’s unpaired t test was used for
analysis.

*Significant differences at p < 0.05 between vehicle and A9-THC. LVAW, left
ventricular anterior wall; LVID, left ventricular interior diameter; LVPW, left
ventricular posterior wall. All animals were males measured at 3 weeks
of age.

DISCUSSION

In the current study, we demonstrated that in utero exposure
to A9-THC alone resulted in fetal growth deficits, including
smaller hearts at birth. Furthermore, at 3 weeks, A9-THC-exposed
offspring exhibited postnatal catch-up growth associated with
cardiac remodelling and adverse left ventricular function. Due to
the recent legalization of marijuana and the fact that cardiovas-
cular disease is the number one cause of death worldwide,
identifying risks that contribute to the increased likelihood of
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Fig. 3 Maternal exposure to 3 mg/kg A9-THC i.p. daily from gestational days 6 to 22 results in increased expression of cardiac
remodelling markers associated with hypertrophy and collagen deposition. Transcript abundance of a collagen | and b collagen lIl. Protein
abundance of ¢ collagen 1 and d collagen lll e Phosphorylated GSK-3f-to-total GSK-3p ratio and f MMP-2. g Representative Western blot
displaying all the cardiac markers with associated Ponceau staining. All protein levels were expressed as means normalized to total protein
(using Ponceau staining), £SEM, N = 7-8 offsprings/group (each offspring was taken from a different dam’s litter). Significant differences
between groups were determined using Student’s unpaired t test (*p < 0.05, **p < 0.01).

developing cardiovascular disease is of great relevance. We
have previously published, utilizing the same model, that this
specific route and dose of A9-THC leads to symmetrical
intrauterine growth restriction (IUGR), which is exhibited by a
proportional decrease of organ and birth weights."" This was
associated with altered placental vasculature and nutrient
transport, which attributed to the fetal growth deficits observed
at birth."" It is worth noting that, using the same dams as the
present cohort, this specific route and dosage does not alter
maternal food intake or weight gain, and does not lead to fetal
demise, which removes confounding effects such as maternal
malnutrition and/or litter size."

It is well established that insults during in utero development
can impede fetal development, which can adversely affect cardiac
function and increase the likelihood of developing cardiovascular
disease later in life.”®>>°® With regards to classifying IUGR, it
should be noted that, in models of asymmetrical IUGR, there is an
increase in heart-to-body weight ratios (suggesting hypertrophy)
indicating a “head sparing effect.”>*’° |n contrast, we have
previously published that our specific model using 3 mg/kg A9-
THC induces placental insufficiency and symmetrical IUGR
whereby birth weight is proportionally decreased along with all
growth parameters (i.e., liver-to-body weight and brain-to-body
weight ratios).""*? This is consistent with our observed decrease in
neonatal heart weight relative to body weight in this current
study. It is noteworthy to consider that placental insufficiency can
result in asymmetric FGR whereby the brain and heart (manifested
as hypertrophic heart) are spared. On the contrary, our previously
published study demonstrated that gestational exposure to A9-
THC results in symmetrical IUGR, which is often associated with
early gestation insults.''”® With respect to why hypertrophic
hearts at birth were not observed in our model, it has been
demonstrated that in fetal cardiomyocytes, CB1R and CB2R
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agonists impede cardiomyocyte growth/hypertrophy.”® Given
10% of maternal A9-THC results in fetal circulation,?**° this
suggests that A9-THC, via activation of CB1R in the heart, could
have a direct effect on cardiac growth. With the loss of the
inhibitory effects of A9-THC post partum, we postulate that both
body and heart weights are able to catch-up in growth by 3 weeks
of age. This is of great interest considering that in other models of
IUGR, postnatal cardiometabolic deficits are not observed until
only after postnatal catch-up growth.®~®? Ultimately, this raises
concern because in humans, fetal growth deficits and a period of
exaggerated rapid growth can be compounded to further increase
the risk of cardiovascular disease.*®>®

Along with decreases in heart size, echo analysis indicates that
A9-THC-exposed animals at birth had significantly increased heart
rate, decreased stroke volume, while maintaining relatively stable
cardiac output. The observed tachycardia at birth has been
previously reported in clinical studies, which indicate that fetal
growth-restricted neonates can exhibit similar cardiac output
relative to control groups even with a decrease in stroke volume,
all due to a compensatory increase in heart rate.*® Similarly, we
suggest that this increase in heart rate in our A9-THC offspring
was to compensate for the decreased stroke volume in order to
maintain stable levels of cardiac output to supply adequate blood
to vital organs during development. However, at 3 weeks, after the
hearts caught up in growth, we observed thicker LVAW
accompanied by impaired cardiac function, including decreased
stroke volume and cardiac output with preserved ejection fraction.
Similar impairments of left ventricular function and hypertrophy
have also been reported in IUGR models of maternal hypoxia.”®
Given this and the trending (p =0.1) rise in wall thickening for
other regions and points of contraction (i.e., LVPW; diastole), we
anticipate that cardiac hypertrophy may further progress with age
as clearly demonstrated in hypoxic and nutrient models of fetal
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growth restriction;>*®> however, long-term studies need to be
conducted. One common stressor that induces hypertrophic
remodelling is hypertension, which can result in a region-
specific (LVPW) hypertrophy.?® The trending increase in LVPW
thickness could suggest that hypertension is playing a contribut-
ing role; however, 3 weeks might be too early given a similar
model of IUGR (e.g., nicotine) exhibited increased cardiac posterior
wall thickness at ~3 months.®> Moreover, in 4-month-old hypoxia-
induced IUGR offspring, high blood pressure was not exhibited
despite evidence of cardiac hypertrophy.>® Although still elusive,
we suspect that the stressor is linked to postnatal catch-up growth
exhibited in these A9-THC offspring, as previously demonstrated
in other models of IUGR (e.g. nicotine).®"* Given the cardiac
output deficits observed and potential long-term cardiac hyper-
trophy, it is tempting to speculate that these offsprings could
exhibit an early progression of diastolic dysfunction, which occurs
in hypertrophic rat hearts of IUGR adult offspring,* although more
long-term studies are warranted. Ultimately, it is quite remarkable
that we observe impaired cardiac function and decreased
efficiency at pre-adolescence; therefore, it will be important to
examine if this persists or rectifies in exposed offspring before the
development of myocardial disease.

As the A9-THC offspring exhibited signs of ventricular dysfunc-
tion (e.g., decreased cardiac output) and ventricular hypertrophy
(e.g., thicker LVAW), we next examined whether this is associated
with deleterious characteristics of ventricular hypertrophy such as
increased collagen deposition, which promotes fibrosis and
stiffening.°*"%® Fibrosis may be an important contributing factor
to ventricular dysfunction and dilated cardiomyopathy.®®=® |t is
well established that increased collagen deposition is a character-
istic of an aging heart.>**7° However, previous models of hypoxia-
induced IUGR using rats have revealed significant collagen
deposition (i.e., higher collagen | and lll) in IUGR offspring early
at 4 months>° Strikingly, our animals exposed to A9-THC in utero
exhibited higher transcript levels of collagen 3 as early as 3 weeks.
Further, Western blot analysis reveals that protein levels of both
collagen 1 and 3% were significantly increased in the exposed
group relative to the control group. This is interesting because this
is earlier than expected, which leads us to suspect that the
observed effects were exacerbated by postnatal catch-up growth.
An increase in collagen content associated with catch-up growth
has been demonstrated in maternal nicotine-exposed offspring.®?
Although these models typically report fibrosis in adulthood, it is
also important to note that earlier signs of fibrosis are apparent in a
model of maternal hypoxia-induced IUGR whereby offspring
exhibited increased collagen content and cross-linking structure
as early as PND7.' Given the early changes in extracellular
collagen in the heart, long-term studies are warranted to examine
if this could progress to cardiac stiffening and decreased
contractility, as observed in other models of IUGR>® In addition
to increased protein expression of collagen, A9-THC-exposed
offspring at 3 weeks also exhibited decreased cardiac protein
expression of MMP-2. The MMPs are a group of collagenases that
regulate collagen deposition, and downregulation of MMP-2
specifically has been attributed to disrupting collagen degradation
in age-associated fibrosis in rat hearts.”* The reduction in MMP-2
protein expression observed in A9-THC-exposed IUGR offspring is
consistent with previously reported decreases in hypoxia-induced
IUGR rat offspring.>° In the hypoxia-induced model of IUGR, it was
also found that ventricular relaxation was impaired at 4 months.>°
Collectively, this suggests that changes in increased cardiac
collagen content due to postnatal catch-up growth in these A9-
THC offspring could lead to accelerated age-related collagen
deposition, which could underlie the cardiac defects observed as
early as 3 weeks and possibly progressing to impaired contractility
and worsened cardiac function.

Along with increased collagen expression, 3-week-old offspring
exposed to A9-THC also demonstrated greater inactivation of
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cardiac GSK-3p as indicated by increased phosphorylation of the
serine 9A residue. Recently, there has been an emergence in the
literature for the role of GSK-3p in fibrotic signalling.”>”* More
specifically, in the heart, a previous study utilizing isolated cardiac
fibroblasts and embryonic mice fibroblasts with deleted GSK-3f3
indicate a profibrotic myofibroblast phenotype.”® In addition to
fibrosis, deletion of GSK-3f is also linked to cardiac hypertrophy in
fetal mice.’® Finally, in an ex vivo study, they demonstrate,
utilizing a protein kinase, that phosphorylation (inactivate) of GSK-
3B is required for cardiomyocytes to undertake hypertrophy.>?
This could be an interesting marker to further explore as these A9-
THC offsprings age because it is involved with numerous
intracellular signalling pathways implicated in a number of
myocardial diseases.>

Our study has a few limitations and future directions. First, our
study did not examine the effects on female offspring. However, it
should be noted that at 3 weeks of age, rats are sexually
immature, indicating that differences in sex steroids will unlikely
contribute to any sex-specific cardiac effects. We have previously
published that A9-THC-exposed female offspring do not exhibit
differences in circulating estrogen and testosterone compared to
control, but it remains plausible that there might be some
underlying epigenetic differences at this early age*® Another
limitation of the study is that we did not examine how A9-THC
might influence the great vessels of the heart. Third, while we
assessed the effects of gestational exposure to A9-THC on
postnatal cardiac dysfunction, future studies should also consider
other developmental windows (pre-pregnancy, lactation, or both)
of exposure. In addition, although we focused on postnatal
outcomes, in utero analysis using Doppler velocimetry could help
further characterize the potential in utero cardiac remodelling and
type of FGR associated with changes in hemodynamic flow.””””°
For example, one clinical study demonstrated that in early-onset
IUGR fetuses abnormal echocardiography and Doppler readings in
the umbilical vein are associated with changes in cardiac
morphology.”® Moreover, studies are also required to address if
cannabidiol (the largest non-psychoactive component of canna-
bis) is safe for fetal and postnatal cardiovascular health. Finally,
further work is warranted to examine if these A9-THC offsprings
exhibit other indices of the metabolic syndrome given the
expression of CB1R and CB2R in developing metabolic
organs.'®"28

In summary, this study demonstrates for the first time that
prenatal exposure to A9-THC alone leads to cardiac dysfunction in
postnatal life. Second, we identified some of the molecular cardiac
targets underlying the early cardiac dysfunction in these gesta-
tional A9-THC-exposed offspring. Given the high rate of maternal
cannabis consumption coupled with increased legalization in
North America,>®® understanding the long-term effects of in utero
cannabinoid (e.g., A9-THC) exposure on postnatal cardiac health is
of great importance. Moreover, the increase in A9-THC concentra-
tions in cannabis over the past decade introduces the potential for
more severe effects.>’ The observed effects of A9-THC exposure
on the offspring may be directly due to A9-THC (via CB1R and
CB2R) impeding the fetal heart development or indirectly
attributed to placental insufficiency and postnatal catch-up
growth.''*® We believe that direct effects are involved for a few
reasons: (1) A9-THC is known to cross the placenta,® (2) the
cannabinoid receptors are expressed in the fetal heart, and (3)
cannabinoid receptor agonists can directly impair cardiomyocyte
growth in isolated neonatal rat cardiomyocytes.?® We argue that
indirect effects are also involved given that exposure to A9-THC
during gestation impairs placental sufficiency resulting in FGR,"
which is associated with cardiovascular disease later in life.*8>>¢
Regardless, the outcomes of these direct and indirect effects of
A9-THC pose serious safety concerns on long-term cardiac
function in cannabinoid-exposed offspring. It is noteworthy that
we have recently demonstrated that A9-THC offspring exhibit
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sex-specific dysglycemia,*® but the effects on lipid (i.e., cholesterol
and triglyceride synthesis) homeostasis remain elusive. Collec-
tively, these metabolic parameters could further impact cardio-
vascular deficits in these offspring later in life.
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