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The ability of neurons to dynamically and flexibly encode synaptic inputs via short- and
long-term plasticity is critical to an organism’s ability to learn and adapt to the environment.
Whereas synaptic plasticity may be encoded by pre- or postsynaptic mechanisms, current
evidence suggests that optimization of learning requires both forms of plasticity. Endogenous
cannabinoids (eCBs) play critical roles in modulating synaptic transmission via activation of
cannabinoid CB1 receptors (CB1Rs) in many central nervous system (CNS) regions, and the
eCB system has been implicated, either directly or indirectly, in several forms of synaptic
plasticity. Because of this, perturbations within the eCB signaling system can lead to impair-
ments in a variety of learned behaviors. One agent of altered eCB signaling is exposure to
“exogenous cannabinoids” such as the primary psychoactive constituent of cannabis, A”-
THC, or illicit synthetic cannabinoids that in many cases have higher potency and efficacy
than A’-THC. Thus, by targeting the eCB system, these agonists can produce widespread
impairment of synaptic plasticity by disrupting ongoing eCB function. Here, we review
studies in which A°-THC and synthetic cannabinoids impair synaptic plasticity in a variety
of neuronal circuits and examine evidence that this contributes to their well-documented
ability to disrupt cognition and behavior.

ne definition of learning is that of a change
Oin behavior or knowledge caused by expe-
rience.' In a broader sense, the definition of
synaptic plasticity is similar; that is, a change
in synaptic strength occurs in response to repet-
itive activity (experience). As synaptic plasticity
is thought to represent a mechanism supporting
learning and memory storage, this definition
seems apt. Like short-term and long-term mem-
ory, synaptic plasticity can refer to changes that
occur on either short or long time scales (Citri

and Malenka 2008; Monday et al. 2018). Thus,
short-term plasticity typically refers to synaptic
processes that occur over more than hundreds of
milliseconds (Abbott and Regehr 2004; Melis
et al. 2004a; Regehr 2012), whereas long-term
plasticity represents synaptic changes that per-
sist for hours, days, months, or longer.

More formally, long-term potentiation
(LTP) is a form of synaptic plasticity in which
a long-lasting increase in excitatory trans-
mission occurs following repetitive synaptic
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activity. LTP was initially described at hippo-
campal glutamatergic synapses in the pioneer-
ing studies of Timothy Bliss and Terje Lomo
(Lemo 1971; Bliss and Lemo 1973), but was
later described at many synapses throughout
the central nervous system (CNS) (for review,
see Nicoll 2017). Later, long-term depression
(LTD), along-lasting decrease in excitatory syn-
aptic transmission following repeated synaptic
activation, was described in the cerebellum (Ito
et al. 1982). The scope of influence of LTD and
LTP was later broadened to also include in-
hibitory synapses. It is now widely accepted
that both LTP and LTD are ubiquitous mecha-
nisms to modify the strength of communication
among neurons throughout the CNS (Lynch
et al. 1977; Sjostrom et al. 2003; Ronesi and Lo-
vinger 2005; Jorntell and Hansel 2006; Ito et al.
2014; Kim and Cho 2017), and a general con-
sensus has emerged that LTP and LTD play roles
in the acquisition (learning) and maintenance of
memories (Whitlock et al. 2006; Johansen et al.
2010; Nabavi et al. 2014; Kim and Cho 2017;
Abraham et al. 2019).

In contrast to long-term plasticity, short-
term changes in synaptic transmission can also
occur in response to pathway activation in the
CNS. One well-known example of short-term
plasticity is a brief increase or decrease in syn-
aptic strength observed when the same synapse
is repeatedly activated in rapid succession (typ-
ically within tens of milliseconds). This form of
short-term plasticity is referred to as paired-
pulse facilitation or paired-pulse inhibition,
depending on the effect of the first synaptic ac-
tivation on the second of the closely spaced pair
(Zucker and Regehr 2002; Regehr 2012). Anoth-
er example of short-term plasticity can be
observed when a postsynaptic neuron of a syn-
aptically coupled pair is depolarized, leading to
the transient (typically 10-60 sec) inhibition of
the synaptic response. This phenomenon is re-
ferred to as depolarization-induced suppression
of inhibition (DSI) when observed at inhibitory
synapses (Pitler and Alger 1994), or excitation
(DSE) when seen at excitatory synapses (Kreit-
zer and Regehr 2001b).

Synaptic plasticity has historically been
most intensively studied at glutamatergic and

GABAergic synapses in the CNS. However,
plasticity at these sites can also be dependent
on, or modified by, an even wider array of
neuromodulators, such as dopamine (DA) or
serotonin, and lipids such as the endogenous
cannabinoids (eCBs) (Otmakhova and Lisman
1996; Chevaleyre et al. 2006; Lovinger 2010; Pa-
lacios-Filardo and Mellor 2019). In this review,
we focus on roles for the eCB system in con-
tributing to synaptic plasticity within the CNS
and how disruption of these processes by syn-
thetic and plant-derived cannabinoids, such as
A’-THGC, can lead to impairments in learned
behavior.

THE ENDOGENOUS CANNABINOID
SYSTEM AND CANNABINOID LIGANDS

The discovery of a brain eCB system began with
the identification of cannabinoid agonist bind-
ing sites and cloning of the cannabinoid CB1
receptor protein (CB1R) (Devane et al. 1988;
Herkenham et al. 1990; Howlett et al. 1990; Mat-
suda et al. 1990). This was followed by identi-
fication of two endogenous agonists at these
receptors, known as N-arachidonoylethanol-
amine ([AEA]; anandamide) (Devane et al.
1992) and 2-arachidonylglycerol (2-AG) (Stella
etal. 1997). It was also at this time that enzymat-
ic pathways were discovered that convert
membrane-bound phospholipids into eCBs in
response to a variety of cellular stimuli (Piomelli
2003; Bisogno et al. 2005). We now understand
that the synthesis and catabolism of the eCBs are
tightly regulated by specific enzymes that have
been extensively reviewed elsewhere (Alger and
Kim 2011; Di Marzo and Piscitelli 2015; Fowler
et al. 2017). Before the discovery of the eCB sys-
tem, the primary psychoactive constituent of
cannabis, A’-THC, was isolated from hashish
(Gaoni and Mechoulam 1964) and later shown
to bind to CB1Rs in the CNS (Herkenham et al.
1990). Additionally, many synthetic cannabi-
noids have been produced in both legitimate
drug discovery programs and in illicit laborato-
ries, and these compounds are typically selected
because of their high potency and efficacy at
CBI1Rs compared with A°-THC (Banister and
Connor 2018). These properties of the illicit syn-
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thetic cannabinoids likely contribute to their un-
wanted and medically serious side effects often
observed clinically in humans (Adams et al.
2017; Hoffman et al. 2017). Studies conducted
in many different brain regions now strongly
support the idea that eCBs and exogenous can-
nabinoids, such as A’-THC and synthetics, exert
their effects in the brain by inhibiting neuro-
transmitter release through the activation of
CBIRs located on axon terminals (Stella et al.
1997; Katona et al. 1999; Szabo et al. 1999; Hoff-
man and Lupica 2000, 2001, 2013; Gerdeman
and Lovinger 2001; Schlicker and Kathmann
2001), and this remains a central focus of can-
nabinoid research. Because the recreational use
of synthetic cannabinoids and A’-THC by hu-
mans has grown in popularity and because of
their strong regulation of synaptic transmission,
we focus on effects of these drugs on the eCB
system in the context of its roles in synaptic plas-
ticity in animal models. However, in general,
brain-imaging studies in human cannabis users
supports the idea that structural and functional
changes are common and that these changes
have clear behavioral and psychiatric conse-
quences (Fischer et al. 2014; Volkow et al.
2014b; Broyd et al. 2016; Lupica et al. 2017;
Bloomfield et al. 2019; Di Forti et al. 2019;
Hwang and Lupica 2019).

ENDOCANNABINOID INVOLVEMENT
IN SHORT-TERM PLASTICITY

The first demonstration that in situ eCB release
could modulate synaptic transmission involved
the phenomenon of DSI at hippocampal
GABAergic synapses (Wilson and Nicoll
2001). Before this, DSI had been observed in
both hippocampal pyramidal cells and cerebel-
lar Purkinje neurons (Llano et al. 1991; Vincent
et al. 1992; Pitler and Alger 1994), where it was
shown that this short-term plasticity was
blocked by calcium chelation within the post-
synaptic cell body, indicating dependence on
an intracellular rise in calcium (Llano et al.
1991; Pitler and Alger 1992). As additional
experiments showed that the inhibition of the
synaptic input occurred presynaptically, it was
hypothesized that a messenger was released

Cannabinoids and Synaptic Plasticity

from the postsynaptic neuron following an in-
crease in calcium caused by depolarization, and
that this messenger acted retrogradely at the
presynaptic axon terminal to somehow inhibit
GABA release. The nature of this hypothesized
retrograde messenger remained a mystery until it
was shown that DSI could be blocked in hippo-
campal pyramidal neurons by the CB1R antag-
onist SR 141716A (rimonabant, Acomplia)
(Wilson and Nicoll 2001), and that it was absent
in mutant mice lacking the CB1R (CB1R™)
(Wilson et al. 2001; Ohno-Shosaku et al. 2002).
These data, therefore, indicated that the retro-
grade messenger mediating DSI at these syn-
apses was likely an eCB. Subsequent studies
supported the idea that this eCB was 2-AG as
pharmacological inhibition of its synthetic en-
zyme, diacylglycerol lipase (DAG), or inhibition
of the catabolic enzyme monoacylglycerol lipase
(MAGL) could bidirectionally modulate DSI
(Makara et al. 2005; Tanimura et al. 2010). Sim-
ilar findings of eCB-dependent DSI were soon
extended to synapses in the cerebellum (Kreitzer
and Regehr 2001a), and, later, DSE identified
at several central glutamate synapses was also
found to require an eCB (Kreitzer and Regehr
2001b; Ohno-Shosaku et al. 2002; Melis et al.
2004b). These studies firmly established a
role for eCBs in mediating activity-dependent
short-term plasticity throughout the CNS via
retrograde signaling from postsynaptic to pre-
synaptic neurons.

ENDOCANNABINOID INVOLVEMENT
IN LONG-TERM PLASTICITY

The release of 2-AG after high-frequency acti-
vation of Schaffer collateral axons in the hippo-
campus and the ability of exogenously applied
2-AG to block hippocampal LTP provided the
first indications that eCBs may participate in
regulating long-term synaptic plasticity (Stella
et al. 1997). Additional evidence also supported
the idea that the short-term regulation of syn-
aptic transmission by eCB-mediated DSI or DSE
could interact with more conventional forms of
long-term synaptic plasticity (Heifets and Cas-
tillo 2009). For example, when a weak stimulus
that is insufficient to alone trigger LTP is paired

Cite this article as Cold Spring Harb Perspect Med 2021;11:a039743 3



Downloaded from http://perspectivesinmedicine.cshlp.org/ on April 30, 2024 - Published by Cold Spring Harbor Laboratory Press

m Cold Spring Harbor Perspectives in Medicine

PERSPECTIVES

Voo’

www.perspectivesinmedicine.org

A.F. Hoffman et al.

with the transient inhibition of GABA release
caused by 2-AG-dependent DSI, LTP can be
observed in hippocampal pyramidal cells (Carl-
son et al. 2002). Thus, short-term eCB-depen-
dent suppression of GABA-mediated inhibition
can gate long-term synaptic plasticity via this
mechanism.

In contrast to the modification of long-term
synaptic plasticity by short-term actions of eCBs
within local hippocampal circuits, these signal-
ing molecules are also known to play more direct
roles (Heifets and Castillo 2009). For example,
2-AG-dependent LTD is observed at glutama-
tergic Schaffer collateral synapses, but not per-
forant path synapses, onto the same population
of CAl pyramidal neurons (Xu et al. 2010).
Therefore, this eCB-dependent LTD likely re-
flects reliance on distinct molecular signaling
pathways engaged by eCBs at these Schaffer col-
lateral and lateral perforant path (LPP) synapses
(Xu et al. 2010; Wang et al. 2018). Endocanna-
binoids also appear to be obligatory for low-fre-
quency-evoked LTD at excitatory synapses in
dorsal striatum (Gerdeman et al. 2002; Ronesi
and Lovinger 2005), nucleus accumbens (NAc)
(Robbe et al. 2002; Hoffman et al. 2003), pre-
frontal cortex (PFC) (Lafourcade et al. 2007;
Lovelace et al. 2014; Martin et al. 2015), cerebel-
lum (Safo and Regehr 2005), basolateral amyg-
dala (BLA) (Huang et al. 2003), and ventral
tegmental area (VTA) (Haj-Dahmane and
Shen 2010; Labouebe et al. 2013). Moreover,
GABAergic synapses within the PFC (Chiu
et al. 2010), amygdala (Marsicano et al. 2002),
and VTA (Pan et al. 2008) also express eCB-
dependent LTD. Another form of synaptic
plasticity, known as spike-timing dependent
plasticity (STDP), can produce either LTD
(t-LTD), typically when a synaptic response fol-
lows a postsynaptic spike by tens of millisec-
onds, or LTP (t-LTP), when a synaptic response
precedes a postsynaptic spike by tens of millisec-
onds (Caporale and Dan 2008). However, in the
striatum, t-LTP can also be produced when an
excitatory postsynaptic potential (EPSP) follows
a postsynaptic spike (Fino et al. 2005) and evi-
dence suggests that eCBs can bidirectionally
modulate striatal STDP resulting in either t-
LTP or t-LTD (Cui et al. 2015; Xu et al. 2018).

Endocannabinoids can also interact with as-
trocytes to facilitate long-term synaptic plastic-
ity in the hippocampus. For example, t-LTD is
observed at Schaffer collateral synapses in the
juvenile mouse hippocampus when an action
potential in a postsynaptic CA1 pyramidal cell
is followed (18 msec) by a glutamate-mediated
EPSP (Andrade-Talavera et al. 2016). This
t-LTD depends on 2-AG release, 2-AG activa-
tion of CB1Rs on the astrocytes, and the release
of D-serine from these glial cells (Andrade-Ta-
lavera et al. 2016). These investigators propose
that D-serine acts at presynaptic N-methyl-D-
aspartate (NMDA) receptors to induce t-LTD,
suggesting that 2-AG can play a critical role in
hippocampal synaptic plasticity by coordinating
the release of astrocytic signaling molecules. In
further support of this, astrocytic CB1Rs appear
to regulate D-serine levels in adult animals, and
this facilitates hippocampal LTP and object rec-
ognition memory (Robin et al. 2018). Endocan-
nabinoids can also directly stimulate glutamate
release from astrocytes, which can then activate
metabotropic glutamate receptors (mGluRs) to
transiently potentiate synaptic signaling at
Schaffer collateral-CA1 synapses (Navarrete
and Araque 2010). Collectively, these data sup-
port a role for astroglial CB1Rs and eCBs in
regulating synaptic plasticity at hippocampal
synapses, and additional evidence suggests that
disruption of these processes following exposure
to A>-THC and synthetic cannabinoids can im-
pair synaptic plasticity and working memory
(Han et al. 2012).

In addition to these roles for eCBs in synap-
tic plasticity at excitatory synapse, 2-AG has
been shown to promote a spatially localized
form of LTD of hippocampal inhibitory
GABAergic synapses known as I-LTD (Cheva-
leyre and Castillo 2003, 2004). Moreover, a func-
tional role for I-LTD has been established by its
ability to gate LTP at glutamate synapses within
a restricted area defined by the spatial extent of
2-AG release and its suppression of GABAergic
transmission (Chevaleyre and Castillo 2004).

In summary, given the involvement of syn-
aptic plasticity in encoding a broad variety of
adaptive learned behaviors (e.g., habit and mo-
tor learning, spatial learning, fear conditioning),
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and the ability of eCBs to regulate short- and
long-term plasticity in many brain areas
(Hilario et al. 2007; Gremel et al. 2016; Augustin
and Lovinger 2018; Segev et al. 2018), it is clear
that alterations within the eCB system caused by
exposure to A’-THC and synthetic cannabi-
noids have the potential to disrupt the coordi-
nated activity that is necessary for these learned
behaviors (Lupica and Hoffman 2018).

Dysregulation of Synaptic Plasticity
by Exogenous Cannabinoids

As described above, the eCB system is involved
either directly or indirectly in several forms of
synaptic plasticity throughout the CNS. There-
fore, it is perhaps unsurprising that the phyto-
cannabinoid A°-THC or synthetic cannabinoids
can profoundly interact with the mechanisms
supporting synaptic plasticity. Whereas the full
consequences of exogenous cannabinoid ex-
posure and its effects on synaptic plasticity are
incompletely understood, current evidence
strongly supports the claim that the eCB system
is altered by exogenous cannabinoids, and this
has clear implications for human behavior in
cannabis use disorder (Volkow et al. 2014a;
Hasin 2018) as well as in other cognitive impair-
ments and adverse outcomes associated with use
of cannabis and synthetic cannabinoids (Every-
Palmer 2011; Bassir Nia et al. 2016). Indeed, the
available evidence suggests that dysregulation of
synaptic plasticity following acute or long-term
exposure to exogeneous cannabinoids is likely to
have widespread effects on information process-
ing, cognition, memory, emotion, and person-
ality (Lupica and Hoffman 2018). Below, we
highlight findings in which changes in synaptic
plasticity across several brain areas have been
assessed following acute or repeated cannabi-
noid exposure and attempt to place this in be-
havioral context.

DORSAL STRIATUM AND VENTRAL
STRIATUM (NUCLEUS ACCUMBENS)

The striatum is a functionally heterogeneous
brain structure thought to be involved in moti-
vation, motor learning, habit formation, reward,

Cannabinoids and Synaptic Plasticity

and drug addiction. Moreover, recent studies
show that both LTP and LTD are critical to these
behavioral roles of the striatum and that eCBs are
involved in several forms of striatal long-term
plasticity (Gremel et al. 2016; Perrin and Ve-
nance 2019). As mentioned above, LTD of glu-
tamatergic afferents to medium spiny neurons in
dorsal and ventral striatum has been described,
and several studies show that this requires 2-AG
(for review, see Perrin and Venance 2019). Be-
cause this form of plasticity is critical for both
dorsaland ventral striatal function, it is likely that
disruption of eCB signaling will alter behavioral
output that broadly relies on striatal circuits. In
this regard, both acute and chronic in vivo expo-
sure to A”-THC can impair eCB-dependent LTD
in the NAc (ventral striatum), and this is associ-
ated with desensitization of CB1Rs (Hoffman
et al. 2003; Mato et al. 2004). Moreover, long-
term treatment with A”-THC can shift goal-
directed responding to habitual responding
(also known as perseveration) during reinforcer
devaluation in mice, a behavior that is dependent
on intact dorsal striatal function (Nazzaro et al.
2012). This behavioral impairment was also as-
sociated with the loss of eCB-dependent LTD in
the striatum, and both the behavior and LTD
were rescued by an inhibitor of small-conduc-
tance, calcium-activated, potassium channels
(Sk channels), which has been shown to facilitate
2-AG function (Riegel and Lupica 2004; Nazzaro
etal. 2012). More recently, self-administration of
A’-THC combined with the phytocannabinoid
cannabidiol (CBD) in rats was associated with a
loss of NMDA receptor-dependent LTD in the
NAc core (Neuhofer et al. 2019). In this case,
LTD was restored in rats extinguished from
A’-THC + CBD self-administration when cues
previously associated with the drugs were pre-
sented, leading to renewed drug seeking, or by
a positive allosteric modulator of CB1Rs (Neu-
hofer et al. 2019). Together, these findings
suggest that long-term exposure to exogenous
cannabinoids can disrupt both synaptic plastic-
ity and striatal-dependent behavior, and that
enhancement of eCB signaling can rescue the
synaptic and behavioral deficits.

Exogenous cannabinoid exposure also ap-
pears to differentially affect distinct NAc affer-
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ents as shown in a study from our laboratory in
which optogenetics was used to selectively acti-
vate several discrete glutamatergic afferents to
the ventral striatal shell region (NAcs). We
found that repeated in vivo exposure to
A’-THC produced an imbalance in the strength
of these connections such that the influence of
both ventral hippocampal and BLA inputs on
NAc medium spiny neurons was increased,
whereas those from medial PFC were greatly
diminished (Hwang and Lupica 2019). More-
over, LTD, produced by a brief application of a
type-I mGluR agonist, was eliminated at PFC
and ventral hippocampal NAc inputs by long-
term A’-THC, whereas LTD at BLA inputs was
unaltered (Hwang and Lupica 2019). These
findings suggest that A’-THC exposure can
cause an imbalance in the excitatory synaptic
control of ventral striatal output and, given the
established role for mGluR-Is in facilitating eCB
release and LTD in the NAc and dorsal striatum
(Gerdeman et al. 2002; Robbe et al. 2002; Kreit-
zer and Malenka 2005), imply that the influence
of eCB-dependent plasticity on these pathways
is lost. Thus, not only is the excitatory influence
of the ventral hippocampus on the NAcs greatly
enhanced following long-term A’-THC expo-
sure, but it is also refractory to potential inhib-
itory control by LTD.

The changes in striatal excitatory transmis-
sion and capacity for LTD have also been shown
to be accompanied by structural changes in
medium spiny neuron anatomy. Thus, repeated
experimenter-delivered A°-THC causes an in-
crease in both dendritic length and the number
of dendritic spines (spine density) (Kolb et al.
2006, 2018) as well as an increase in spine den-
sity in the dorsal striatum (Fernandez-Cabrera
etal. 2018). However, another study showed that
there was a decrease in the density of dendritic
spines in NAc medium spiny neurons after ex-
tinction from A’-THC+CBD self-administra-
tion, and this was associated with a loss of
LTD (Spencer et al. 2018). The most obvious
differences among these studies that may ac-
count for the discrepancies in anatomical data
are the use of contingent self-administration of
A’-THC versus noncontingent exposure as well
as the use of A’-THC +CBD versus A’-THC

alone. Reconciliation of these disparate findings
represents an important direction for future
studies. However, despite these differences,
these studies show that long-term exposure to
A’-THC can cause profound changes in synap-
tic function in dorsal and ventral striatum that
parallel changes in behavior, which relies on the
integrity of the eCB system. Interestingly, other
drugs that have high abuse liability, including
opiates, psychostimulants, and ethanol, also im-
pair striatal LTD (Moussawi et al. 2009; Kasa-
netz et al. 2010; Pierce and Wolf 2013; Shen and
Kalivas 2013; Spiga et al. 2014) and this has been
linked to habitual drug seeking in a rat cocaine
self-administration study (Kasanetz et al. 2010).
In several of these studies, the physiological and
behavioral alterations have also been associated
with structural changes in medium spiny neu-
ron morphology, suggesting that both pre- and
postsynaptic components of synaptic transmis-
sion can be affected by exposure to abused
drugs, including cannabinoids.

HIPPOCAMPUS

Schaffer Collateral-CA1 Synapses

As described above, the eCB system can regulate
hippocampal function and CB1Rs are located
on both GABAergic and glutamatergic axon ter-
minals in this brain structure (Katona et al.
1999, 2006; Hoffman and Lupica 2000; Dinh
etal. 2002; Matyas et al. 2008). The participation
of eCBs in facilitating LTP, either through
suppression of GABAergic transmission (Carl-
son et al. 2002; Chevaleyre and Castillo 2004) or
through the promotion of astroglial signaling
(Gomez-Gonzalo et al. 2015; Robin et al.
2018), suggests that A’-THC or synthetic can-
nabinoids can disrupt synaptic plasticity
through a variety of mechanisms. Experiments
in our laboratory showed that repeated in vivo
exposure to A’-THC blocked LTP at Schaffer
collateral-CA1 synapses (Hoffman et al. 2007).
The LTP disruption required at least 3 days of
A’-THC exposure, was only partially reversed
14 days after A’-THC withdrawal, and required
CBIRs, as the LTP impairment by A’-THC was
prevented by a CB1R antagonist (Hoffman et al.
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2007). This partial recovery of LTP at 2 weeks of
withdrawal from A’-THC correlates with the
incomplete recovery of CBIR binding in the
hippocampus (Hirvonen et al. 2012), as well as
the time course of hippocampal-dependent
memory impairments following A°-THC with-
drawal in humans (Bolla et al. 2002). The obser-
vation that long-term A’-THC prevents LTP is
also generally consistent with the ability of a
variety of synthetic cannabinoid agonists to dis-
rupt hippocampal synaptic plasticity (Hill et al.
2004; Fan et al. 2010; Basavarajappa and Sub-
banna 2014; Hoffman et al. 2017).

Although the A”-THC-induced impairment
in hippocampal LTP could result from its ac-
tions at CB1Rs located on either glutamatergic
or GABAergic terminals, the genetic deletion of
these receptors from only GABAergic neurons
reduces LTP, whereas their deletion on glutama-
tergic neurons enhances LTP (Monory et al.
2015). Using a similar selective CB1R deletion
strategy, it was also shown that the memory
impairment caused by acute A’-THC was absent
when CB1Rs were deleted on GABAergic termi-
nals, where these receptors are more abundantly
expressed (Puighermanal et al. 2009, 2013).
Consistent with these results, long-term A’-
THC exposure appears to preferentially reduce
CBIR sensitivity to agonists on GABAergic but
not glutamatergic axon terminals in the hippo-
campus (Hoffman et al. 2007), and CBI1R pro-
tein expression on GABA neuron axon terminals
is strongly reduced following this treatment (Du-
dok et al. 2015). Therefore, and somewhat para-
doxically, these studies seem to imply that long-
term A’-THC exposure has a larger impact on
CB1Rs on GABAergic axon terminals than
on glutamatergic terminals, and that these
A’-THC-induced alterations contribute to defi-
cits in LTP generated at glutamate synapses
(Carlson et al. 2002; Chevaleyre and Castillo
2004). We speculate that this may reflect
changes in an ongoing modulatory role of
eCBs on GABAergic synaptic transmission
that interacts with synaptic glutamatergic pro-
cesses, such as the facilitation of glutamatergic
LTP by DSI (Carlson et al. 2002). In support of
this idea, treatment of hippocampal autaptic
cultures with A’-THC for 19 hours eliminates

Cannabinoids and Synaptic Plasticity

DSI (Straiker and Mackie 2005), suggesting
that this ongoing short-term suppression of
GABAergic inhibition and its ability to facilitate
LTP might also be lost following long-term
A’-THC exposure. As described above, I-LTD
of GABAergic synaptic transmission in the
hippocampus can suppress inhibition within
restricted regions of CAl pyramidal neuron
dendrites to facilitate LTP induction at glutama-
tergic synapses within this sphere of I-LTD in-
fluence (Chevaleyre and Castillo 2004). As this
form of 2-AG-dependent plasticity is strongly
reduced following a single in vivo exposure to
A’-THC (Mato et al. 2004), it is likely that long-
term A’-THC would similarly impair this pro-
cess. Therefore, these studies suggest ways in
which reductions in eCB-dependent regulation
of GABAergic synapses caused by A’-THC ex-
posure can lead to impaired plasticity at gluta-
matergic synapses in the hippocampus.

In addition to its ability to block LTP,
A’-THC can also induce LTD at CA3 to CAl
pyramidal cell Schaffer collateral synapses in
vivo (Han et al. 2012). Interestingly, this effect
of A>-THC appears to result from activation of
CB1Rs located on astrocytes (Navarrete and
Araque 2010), the subsequent activation of post-
synaptic NMDA receptors, and the internaliza-
tion of AMPA receptors (AMPARs) (Han et al.
2012). A similar astroglial-dependent LTD was
observed following treatment with JZL-184, an
inhibitor of MAGL, the enzyme necessary for
2-AG degradation, thereby implicating this
eCB (Wang et al. 2017). More recently, activa-
tion of astroglial CB1Rs was shown to enhance
D-serine release, thereby facilitating NMDA
function, enhancing hippocampal LTP, and im-
proving novel object recognition memory (Ro-
bin et al. 2018). Together, these data suggest that
CBIR activation by exogenous cannabinoid li-
gands can bidirectionally modulate CA3 to CA1
hippocampal synaptic plasticity via CB1Rs lo-
cated on neurons and glial cells. The effects of
repeated cannabinoid exposure on astroglial
signaling remains an intriguing area for future
investigations.

Similar to the striatum, the changes in hip-
pocampal synaptic plasticity caused by long-
term exogenous cannabinoid exposure parallel
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alterations in dendritic structure and morphol-
ogy. Reductions in spine density are reported in
both dentate granule cells (Rubino et al. 2009)
and CA1 pyramidal neurons (Chen et al. 2013)
following repeated A”-THC treatment. More re-
cently, it has also been suggested that chronic
activation of CB2 receptors may play a role in
regulating hippocampal synaptic morphology
and synaptic plasticity (Kim and Li 2015; Li
and Kim 2016), and chronic exposure to CB2
agonists increases spine density in cultured hip-
pocampal neurons (Kim and Li 2015). However,
it should be noted that nearly all reported effects
of A>-THC and other synthetic cannabinoids on
a variety of hippocampal-dependent behaviors
and synaptic plasticity are blocked by selective
CB1 antagonists, and are absent in mutant
mice lacking CB1Rs (Varvel et al. 2001; Varvel
and Lichtman 2002; Hoffman et al. 2007; Hei-
fets et al. 2008; Wise et al. 2009; Hebert-Chate-
lain et al. 2016). Thus, any contribution of
non-CB1 receptors to the effects of exogenous
agonists must be carefully evaluated with this
caveat in mind.

Other Hippocampal Synapses

The LPP connects entorhinal cortical neurons
to those in the dentate gyrus of the hippocam-
pus, as well as to other hippocampal subfields
(Witter 1993, 2007). There is evidence that eCB
activation of CBI1Rs is involved in promoting
LTP in this pathway, which is implicated in spa-
tial and episodic memory as well as learning
(Wilson et al. 2013; Wang et al. 2016). The
role of eCBs in facilitating LTP in this pathway
appears to reflect a direct effect on reorganiza-
tion of the actin cytoskeleton in presynaptic LPP
terminals. Thus, latrunculin-A (lat-A), an in-
hibitor of actin filament polymerization, im-
paired eCB-dependent LTP (Wang et al. 2016).
In addition, an odor-based learning task that is
dependent on LPP function was blocked by the
CBIR antagonist AM251 and enhanced by an
inhibitor of 2-AG degradation (Wang et al.
2016). In a subsequent study, these investigators
found learning-induced increases in the presyn-
aptic LPP expression of pROCK, a protein in-
volved in actin stabilization (Wang et al. 2018).

More importantly, these observed increases in
protein expression at LPP terminals were pre-
vented by prior treatment of the animals with
AM251. Thus, it appears that eCBs are necessary
for promoting plasticity and learning in this
circuit. Because reductions in spine density are
observed in the dentate gyrus following chronic
A’-THC (Rubino et al. 2009), it is possible that
these changes reflect disruptions to ongoing
eCB activity within this pathway. Together,
these intriguing findings show that the LPP
may be a critical site for cannabinoids involve-
ment in hippocampal-dependent learning and
memory, and these hippocampal afferents rep-
resent an important subject for additional
research on memory impairments caused by ex-
ogenous cannabinoids.

VENTRAL TEGMENTAL AREA

The VTA is a central component of the brain’s
reward system that contains DA neurons that
project to forebrain areas. These cells also re-
ceive inputs from a large number of brain re-
gions and integrate information from both glu-
tamatergic and GABAergic afferents (Bjorklund
and Dunnett 2007; Geisler et al. 2007). It is now
well-established that VTA DA neurons release
eCBs, and that these lipid mediators strongly
regulate synaptic inputs to DA neurons (Melis
et al. 2004b; Riegel and Lupica 2004; Wang and
Lupica 2014). Thus, 2-AG released from DA
neurons inhibits both GABAergic and glutama-
tergic inputs to these cells (Haj-Dahmane and
Shen 2010; Melis et al. 2014; Wang et al. 2015)
and can also limit LTP of glutamatergic afferents
(Kortleven et al. 2011). The importance of eCB
signaling within the VTA for regulating both
rewarding and aversive behaviors has also been
established (Oleson et al. 2012; Wenzel et al.
2018). Exposure to exogenous cannabinoids
also alters eCB control of synaptic function in
the VTA. For example, our laboratory has
shown that a single exposure to A’-THC can
trigger LTD of glutamatergic pedunculopontine
nucleus (PPN) inputs to VTA DA neurons, and
that this is mediated by insertion of GluA2 sub-
unit-containing AMPARs at these synapses
(Good and Lupica 2010). Moreover, this effect
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of A>-THC is distinct from the actions of co-
caine, which more globally affected plasticity at
both PPN inputs, as well as at glutamatergic
inputs to VTA DA neurons arising from other
brain areas such as the PFC (Good and Lupica
2009, 2010; Xiao et al. 2018). In contrast, a sub-
sequent study showed that long-term exposure
to A’-THC or the synthetic cannabinoid agonist
HU-210 resulted in a loss of cell surface expres-
sion of GluA2 subunit-containing AMPARSs
and the potentiation of glutamate synapses aris-
ing from unidentified afferents (Liu et al. 2010).
These investigators also showed that the poten-
tiation of these synapses caused by long-term
cannabinoid exposure could be subsequently
weakened by low-frequency activation of these
glutamatergic afferents, thus resulting in a form
of LTD or “depotentiation” at these synapses
onto VTA DA neurons (Liu et al. 2010). This
form of LTD was blocked by a TAT-GluA2
peptide that prevents receptor endocytosis, sug-
gesting that it was mediated by AMPAR inter-
nalization (Brebner et al. 2005; Liu et al. 2010).
Thus, although acute A’-THC exposure appears
to selectively alter synaptic plasticity at a sub-
cortical input to VTA DA neurons (Good and
Lupica 2010), long-term exposure to the drug
may result in changes in synaptic plasticity at a
wider range of VTA DA neuron afferents (Liu
et al. 2010).

In addition to literature describing synaptic
plasticity in VTA DA neurons and its alteration
by exposure to exogenous cannabinoids, a more
recent study has shown that 2-AG-dependent
LTD occurs at glutamate inputs to VTA
GABAergic neurons, and that it can be occluded
by acute A°-THC exposure in vitro (Friend et al.
2017). This form of LTD in VTA GABA neurons
was not affected by a single in vivo exposure to
A°-THC, but was absent after 7-10 days expo-
sure to the drug (Friend et al. 2017). Together,
the above studies suggest that a single exposure
to A’-THC can alter synaptic plasticity at PPN
glutamate synapses onto VTA DA neurons, and
that long-term exposure to either A°-THC or
synthetic cannabinoid agonists can disrupt syn-
aptic plasticity at undefined glutamatergic in-
puts to both GABAergic and DAergic neurons
within the VTA.

Cannabinoids and Synaptic Plasticity

Emerging evidence also shows that
eCB-dependent synaptic plasticity in the VTA
is modified by abused drugs and that this may be
involved in some aspects of drug use and psy-
chiatric disorders (Wenzel and Cheer 2018).
Studies from our laboratory have shown that
cocaine stimulates synthesis and release of
2-AG from DA neurons, that this can increase
DA neuron excitability and DA release in the
NAg, and that this is mediated by CB1Rs located
on DA neuron GABA afferents (Wang et al.
2015; Nakamura et al. 2019). The cocaine-in-
duced enhancement of 2-AG function has also
been shown to cause CB1R-dependent I-LTD of
GABAergic synapses on these DA neurons (Pan
et al. 2008). Therefore, these data imply that the
ability of cocaine to increase forebrain levels of
DA may be mediated, in part, by its stimulation
of eCB function in the VTA. This, together with
our understanding of the importance of mid-
brain DA systems for addiction and psychiatric
disorders, indicates that the eCB system is likely
to have an important role in these phenomena,
and that additional investigations of the effects
of long-term exposure to cannabinoids on the
effects of cocaine should be a priority for future
studies. More generally, however, given the crit-
ical role for VTA neurons in processing salient
environmental stimuli and their involvement in
reward and appetitive-based learning (Flagel
et al. 2011; Brown et al. 2012; Wenzel et al.
2015), it is likely that the changes in synaptic
plasticity produced by cannabinoid exposure
will strongly influence these critical behavioral
roles for VTA function.

BASOLATERAL AMYGDALA

The BLA is involved in processing fear and anx-
iety (Correia et al. 2016; Davis et al. 2017; Ressler
and Maren 2019), and there is strong evidence
that LTP within the BLA underlies the expres-
sion of fear conditioning (Nabavi et al. 2014;
Kim and Cho 2017). Within the BLA, CBIRs
are expressed on GABAergic (Katona et al.
2001) and glutamatergic afferents (Azad et al.
2003) that converge to control BLA pyramidal
cell output to cortical and subcortical brain
areas (Pistis et al. 2004; Jones et al. 2010).
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Low-frequency stimulation of the BLA results in
eCB-dependent LTD of inhibitory inputs to
BLA principal neurons (Marsicano et al. 2002;
Azad et al. 2004), which strengthens subsequent
excitatory inputs to promote LTP (Azad et al.
2004). Strengthening BLA outputs to the medial
PFC is likely to play a critical role in processing
the emotional response to aversive stimuli (La-
violette et al. 2005; Tan et al. 2010). BLA eCB
release is enhanced when a conditioned auditory
stimulus is presented during extinction of fear
conditioning, and CB1 antagonists impair this
extinction (Marsicano et al. 2002). Thus, it has
been proposed that eCBs within the BLA regu-
late extinction of fear conditioning, an observa-
tion that has clear relevance to posttraumatic
stress disorders in humans. A further link be-
tween stress and eCB signaling within the BLA
has been described by Di and colleagues (Di et
al. 2016). These investigators showed that gluco-
corticoids promote endocannabinoid-mediated
inhibition of GABAergic inputs to BLA neurons
and that intra-BLA infusions of a CB1 antago-
nist or an inhibitor of 2-AG synthesis prevents
the anxiety-like behaviors observed following
restraint stress (Di et al. 2016). Such findings
are consistent with earlier studies showing a
role for eCBs within the BLA mediating both
memory consolidation and its enhancement by
glucocorticoids and link the brain’s stress re-
sponse to BLA eCB action (Campolongo et al.
2009; Morena et al. 2014). More recently, re-
straint stress was shown to decrease anandamide
levels in the BLA, leading to enhanced glutama-
tergic transmission onto BLA principal cells
(Yasmin et al. 2020). These effects were prevent-
ed in animals receiving a fatty acid amide hydro-
lase (FAAH) inhibitor before the restraint stress.
Moreover, the same acute stress caused a delayed
(10 days) increase in BLA pyramidal cell spine
density that was also prevented by the FAAH
inhibitor (Yasmin et al. 2020). Interestingly,
2-AG levels in the BLA were enhanced and
GABAergic transmission reduced by the same
stress procedure. Thus, stress may produce diver-
gent actions on GABAergic and glutamatergic
signaling through alterations in different eCBs.
Despite the extensive literature implicating
the eCB system in regulating fear and anxiety,

and the fact that many of the symptoms of can-
nabinoid use disorder involve changes in these
behaviors (Crippa et al. 2009), the effects of
chronic cannabinoid exposure on BLA synaptic
plasticity remains relatively unexplored. Studies
that have examined this have shown that chronic
treatment of adolescent animals with either A’-
THC or synthetic cannabinoids can impair fear
conditioning in adulthood (Gleason et al. 2012;
Tomas-Roig et al. 2017). Additionally, another
more recent study found that fear memory
processing was impaired only when A’-THC ex-
posure was paired with a stressful experience
(Saravia et al. 2019). It is intriguing that these
behavioral effects were accompanied by in-
creases in the density of immature dendritic
spines in the BLA (Saravia et al. 2019) because
such structural changes often accompany alter-
ations in synaptic plasticity. Indeed, recent evi-
dence suggests that eCBs participate directly in
the delayed structural changes observed in BLA
neurons following stress (Yasmin et al. 2020).
Finally, work from our laboratory shows that
the strength of glutamatergic BLA afferents to
the NAc is more than doubled following repeat-
ed A’-THC (Hwang and Lupica 2019). As this
pathway is also implicated in conditioned drug-
seeking behavior and the encoding of emotional
valence (Everitt and Robbins 2005), it is possible
that long-term cannabinoid exposure may in-
crease the emotional salience of drug-paired en-
vironmental cues. Thus, functional studies on
modifications in eCB signaling within the BLA
and their contributions to altered synaptic plas-
ticity following exposure to cannabinoid drugs
remains a critical direction for future studies.

SUMMARY AND CONCLUSIONS

Cellular and behavioral research over the past
50 years indicates that diverse and ubiquitous
mechanisms are present to alter the strength of
synaptic connections across a wide range of tem-
poral domains and brain regions. Because the
mechanisms supporting this synaptic plasticity
generally require repeated pathway activation,
there are ostensible parallels between this cellu-
lar phenomenon and behavioral manifestations
of learning and memory. Moreover, there is now
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direct evidence that synaptic plasticity can un-
derlie changes in brain circuit function resulting
from experience. This evidence is particularly
strong in circuits within the striatum, the amyg-
dala, and the hippocampus, in which plasticity
regulates learning of habits, fear, and context,
respectively. Because the eCB system is ubiqui-
tously expressed in the CNS (Herkenham et al.
1990) and because it is involved in widespread
control of synaptic function, it can either di-
rectly mediate or modulate synaptic plasticity
in many brain regions. This regulation of syn-
aptic function requires the synthesis and release
of eCBs that then activate cannabinoid recep-
tors, with CB1Rs having the most supporting
evidence to date. Because of this, CBIRs are
critical for eCB system function and changes
in their activation, coupling to downstream ef-
fectors, or availability can bias the contributions
that the eCB system makes to the regulation of
neural activity, plasticity, and learned behavior.
As we describe here, extensive evidence shows
that exposure to A’-THC or to synthetic canna-
binoids can impair synaptic plasticity in many
brain areas, either directly or indirectly. Exper-
imental approaches investigating the cause of
these impairments generally point to CB1R de-
sensitization or internalization as a primary
cause (Hoffman et al. 2003, 2007; Sim-Selley
2003; Mato et al. 2004; Schlosburg et al. 2010;
Nazzaro et al. 2012; Dudok et al. 2015; Good-
man and Packard 2015). Thus, the evidence
strongly suggests that long-term, or in some
cases, single exposure to A’-THC or synthetic
cannabinoids can disrupt eCB-supported syn-
aptic plasticity and its influence on behavior
via alterations in CBI1R function or expression.
There is also evidence that the loss of ongoing
eCB function can lead to more widespread “re-
wiring” of brain circuits, such as that seen in the
NAc, hippocampus, and VTA after A’-THC ex-
posure (Hoffman et al. 2007; Good and Lupica
2010; Hwang and Lupica 2019). Collectively,
these changes can produce deficits in learning
and memory or, in some cases, deficits in “un-
learning” or extinction of learned associations
such as those observed in fear conditioning. Al-
though much has been learned as to the influ-
ence of the eCB system on synaptic plasticity and

Cannabinoids and Synaptic Plasticity

behavior, additional research is needed to define
the temporal limits of the effects of exogenous
cannabinoids on synaptic plasticity in adult or-
ganisms, as well as on the effects of these drugs
on brain development that may more perma-
nently alter the functions of brain circuits de-
pendent on intact eCB system function.
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