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STUDY DESIGN: Systematic review.

OBJECTIVES: To evaluate the impact of cannabinoids on neurobehavioral outcomes in preclinical models of nontraumatic and
traumatic spinal cord injury (SCl), with the aim of determining suitability for clinical trials involving SCI patients.

METHODS: A systematic search was performed in MEDLINE and Embase databases, following registration with PROPSERO
(CRD42019149671). Studies evaluating the impact of cannabinoids (agonists or antagonists) on neurobehavioral outcomes in
preclinical models of nontraumatic and traumatic SCl were included. Data extracted from relevant studies, included sample
characteristics, injury model, neurobehavioural outcomes assessed and study results. PRISMA guidelines were followed and the
SYRCLE checklist was used to assess risk of bias.

RESULTS: The search returned 8714 studies, 19 of which met our inclusion criteria. Sample sizes ranged from 23 to 390 animals.
WIN 55,212-2 (n = 6) and AM 630 (n = 8) were the most used cannabinoid receptor agonist and antagonist respectively. Acute SCI
models included traumatic injury (n = 16), ischaemia/reperfusion injury (n = 2), spinal cord cryoinjury (n = 1) and spinal cord
ischaemia (n = 1). Assessment tools used assessed locomotor function, pain and anxiety. Cannabinoid receptor agonists resulted in

statistically significant improvement in locomotor function in 9 out of 10 studies and pain outcomes in 6 out of 6 studies.
CONCLUSION: Modulation of the endo-cannabinoid system has demonstrated significant improvement in both pain and
locomotor function in pre-clinical SCI models; however, the risk of bias is unclear in all studies. These results may help to
contextualise future translational clinical trials investigating whether cannabinoids can improve pain and locomotor function

in SCI patients.
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INTRODUCTION

Spinal cord injury (SCI) is a traumatic event associated with severe
disability and mortality [1]. Prevalence of SCl is estimated to be
906 cases per million in the United States and incidence as high as
58 cases per million per year in some European countries [2, 3].
The consequences of SCI encompass motor, sensory and
autonomic domains [4]; functional disability, reduced quality of
life and high prevalence of affective disorders are common [5].
Chronic neuropathic pain affects up to 75% of people with SCI [5].
Burning and shooting pain as well as hypersensitivity to cutaneous
stimuli have detrimental effects on rehabilitation, mood and
mental health [6].

The classic model of SCI consists of two phases [1]. The first
phase involves direct damage as a result of mechanical trauma.
This causes immediate damage and then catalyses the second
phase of injury driven by aberrant molecular, cellular and
biochemical cascades. Secondary injury constitutes damage

caused by ischaemia, ionic derangements, excitotoxicity, free
radical damage, oedema, inflammation and apoptosis [7, 8].

Cannabinoid (CB) receptor agonists are a promising pharmaco-
logical approach [9]. CBs were first identified as the psychoactive
constituents of marijuana [10]. However, an endogenous canna-
binoid system also exists, consisting of two CB receptors (CB1 and
CB2), natural ligands (endo-CBs) such as anandamide, and
enzymes involved in endo-CB synthesis and degradation [11].
Following SCl, local modulation of the endo-CB system has been
reported [11]. This involves increased levels of anandamide,
upregulation of the synthetic enzyme, and downregulation of the
degradative enzyme. Moreover, the endo-CB system has been
shown to be important in neuroprotection and immunomodula-
tion after SCI [11], as well after cerebral ischaemia-reperfusion
injury [12] and traumatic brain injury [13].

A number of cannabinoids have been shown to downregulate
processes thought to be important in the secondary phase of SCI.
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For example, cannabidiol (CBD) is an exogenous cannabinoid
receptor agonist currently being evaluated in a number of clinical
trials for multiple medical conditions [14-17]. CBD has been
shown to reduce reactive oxygen and nitrogen species produc-
tion, chemokine and cytokine release, microglial and astrocyte
activation, as well as T cell proliferation [18, 19]. In addition, WIN
55,212-2, a non-selective CB receptor agonist, downregulates
central nervous systems neutrophil infiltration and apoptosis in
multiple sclerosis [20], promotes neural remyelination in neonatal
rats experiencing hypoxia-ischaemia [21] and relieves neuropathic
pain following peripheral nerve injury in mice [22].

Given the mechanism of action of cannabinoids and the
pathophysiology of SCI, there may be a therapeutic role for
cannabinoids in patients following SCI. A recent systematic review
of cannabinoid use in human patients with SCl found cannabinoid
receptor agonists may be associated with reductions in pain and
spasticity, however, the magnitude of these effects and clinical
significance was unclear [23]. Furthermore, the overall quality of
the included studies was reported as poor [23]. A series of reviews
from the International Association for the Study of Pain (IASP)
highlighted a similar lack of high-quality pre-clinical or clinical
evidence for the use of cannabinoids in pain management
specifically [24, 25]. This was the basis for the IASP position
statement in March 2021, which stated that the IASP do not
endorse the use of cannabinoids and cannabis-based medicine in
pain management. Therefore, whilst cannabinoids have showed
clinical promise, their clinical use remains limited by the strength
of the pre-clinical and clinical evidence base.

This systematic review aims to evaluate the impact of
cannabinoids, including cannabinoid receptor agonists, cannabi-
noid receptor antagonists, and endocannabinoid system mod-
ulators, on pain but also locomotor function and anxiolysis in
preclinical models of SCI. Cannabinoid agonists are of interest
firstly, due to their ability to downregulate processes involved in
the inflammatory phase of SCl and secondly, due to reports of
beneficial clinical effects following SCI. Furthermore, there exist
several cannabinoid receptor agonists licensed for clinical use, and
therefore evaluating the effects of cannabinoid agonists is
important to gauge whether these drugs could potentially be
used in translational clinical trials for patients who have under-
gone SCl. The effects of cannabinoid receptor antagonists and
endocannabinoid system modulators are also of mechanistic
interest, as they provide insight into the role of the endo-
cannabinoid system following SCI.

This systematic review secondarily aims to offer discussion of the
potential underlying mechanisms of action and the potential
suitability of cannabinoids for future clinical trials in SClI patients.
In this review, we also explore whether cannabinoids are associated
with improvements in neurobehavioural outcomes in animal models
of SCI and whether there may be merit in using cannabinoids to
treat the symptoms experienced by patients following SCI.

The pressing unmet clinical need and scope for this review were
identified through the REsearch Objectives and Common Data
Elements for Degenerative Cervical Myelopathy (RE-CODE DCM)
initiative, an international consortium of key stakeholders in
degenerative cervical myelopathy (DCM), which provided con-
sensus on DCM research priorities [26].

METHODS

This systematic review was conducted following the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) guidelines. [27]

Protocol and registration

The protocol for this review was published on PROSPERO (an
international prospective register of systematic reviews) on 3
December 2019 (CRD42019149671).
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Eligibility criteria
The inclusion and exclusion criteria used in this review are
presented in full in the Supplementary Material.

Population and injury model. This review included only preclinical
animal models, and human studies were excluded. SCI models
such as traumatic injury, spinal cord ischaemia or cryogenic spinal
cord injury were included. Peripheral nerve injury or traumatic
brain injury models were excluded.

Intervention and comparison. Studies were included if they used
cannabinoid receptor agonists (e.g. WIN 55,212-2), cannabinoid
receptor antagonists (e.g. AM251 or AM630) or endocannabinoid
system modulators (e.g. acetaminophen or naloxone), adminis-
tered intravenously, intraperitoneally or intrathecally. To be
included, studies required a control treatment group and one or
more cannabinoid treatment groups. Studies were not excluded
based on drug administration parameters such as frequency or
the duration of dosing.

Outcomes. Neurobehavioural outcomes, defined as outcomes of
motor and/or sensory function, including pain, were the focus of
this review. Studies that assessed neurobehavioural outcomes
using tools such as the Basso, Beattie and Bresnahan score for
locomotor function and von Frey filaments for mechanical
allodynia and hyperalgesia were included. Studies that exclusively
assessed other parameters, such as histological or autonomic
outcomes, were excluded.

Information sources
To identify articles, a systematic search was performed of MEDLINE
and Embase databases on December 14, 2020.

Search
The search strategy was developed with the assistance of a
medical librarian at the Cambridge University Medical Library. The
terms used to search MEDLINE and Embase are provided in
the Supplementary Material. No additional search limits were
applied.

Study selection

Duplicates were excluded in Mendeley (Elsevier, London, UK). The
abstracts were then screened independently by 14 of the authors
using Rayyan software. The abstracts were divided into 7 groups.
Each group of abstracts was reviewed by a pair of authors.
Disagreements were resolved through discussion between the
reviewers until mutual agreement was reached.

Data extraction

The data extracted were: author, year of publication, country of
experiments, study characteristics (e.g. number of experimental
groups, level of evidence), sample characteristics e.g. size, number
of groups, species, strain, age, sex, weight, and comorbidities),
intervention (including injury model and the type, dose, frequency
and route of drug), the methods and results of any neurobeha-
vioural assessment, and the nature of any relevant statistical
analysis performed. Data extraction was performed by one of the
authors (FB).

Analysis and reporting

Due to the diverse range of injury models, interventions and
outcomes, meta-analysis was not possible and a narrative
synthesis using the Synthesis Without Meta-analysis (SWiM)
reporting guideline was conducted [28]. A checklist of adherence
is provided in the Supplementary Material. Studies were primarily
grouped based on outcome measures and secondarily
the cannabinoid intervention used. The three broad outcome
categories were motor function, pain and anxiolysis. The
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differences (mean/median/p values) between intervention and
control groups reported by individual studies for each outcome
measure was initially summarised in a table. Findings were
subsequently summarised by transforming the difference mea-
sures into standardised metric-direction of effect (positive/
negative/no effect) and synthesised in the form of harvest plots
by vote-counting based on direction of effects. Combining p
values and calculating summary statistics of intervention effect
estimates was not possible. Heterogeneity in reported effects was
investigated by structuring figures around the injury model,
interventions, and outcomes assessed; these are provided in
the Supplementary Material. The SYRCLE (Systematic Review
Centre for Laboratory Animal Experimentation) tool was used to
evaluate the risk of bias of the included studies [29]. Since risk of
bias was determined to be ‘unclear’ for all the included studies, it
could not be used to prioritise the reporting of certain findings
over others, thus study findings were reported equally in the
narrative synthesis.

RESULTS

Study selection

The search generated 8714 results. A total of 2062 duplicates were
removed using Mendeley (Elsevier, London, UK), resulting in 6652
unique studies. Following the abstract screening, 41 studies were
found to meet the inclusion criteria (Supplementary Material). On
full-text screening, 23 studies were excluded for the reasons
outlined in the Supplementary Material. One additional relevant
study was identified in the reference list of an included study. In
total, 19 studies were included (Fig. 1).

Study characteristics

Of the 19 included studies, 13 studies used rat models of SCI
[30-42] and 6 used mice models [43-48]. Sprague-Dawley rats
were used in 10 studies [30, 33-41] and Wistar rats in 3 studies
[31, 32, 42]. With regards to strains of mice, CD1 mice were used
by 3 studies [43, 45, 48] while CB57BL/6J [44], CB57BL/6 [46] and
PPAR-aKO mice with litter-mate wildtype controls [47] were each
used in 1 study. Male animals were used in 16 studies [30-45]
whilst female animals were used in 1 [46]. 2 studies did not specify
the sex of the animals used [47, 48]. The age of mice and rats were
not specified in 11 studies [34-42, 46, 48]. Of the 8 studies which
commented on animal age, 4 studies explicitly specified the age of
the animals used [31, 33, 44, 47] and 4 studies stated adult animals
were used [30, 32, 43, 45].

The different injury models used are summarised in Fig. 2 and
Table 1. Compression models, involving microvascular clips (n =9)
[35-39, 43, 45, 47, 48] and silicon tube insertion into the vertebral
canal [44], and contusion models involving spinal cord impaction
devices (n=4) [30, 31, 33, 46] were the most commonly used.
Other models used included spinal cord ischaemia via aortic
occlusion [40], cryogenic injury using liquid nitrogen [42], spinal
cord hemisection [32], ischaemia-reperfusion injury via aortic
occlusion [34] and ischaemia-reperfusion injury via aortic clamp-
ing [41]. The majority of SCI models used thoracic injury (n = 15)
[30, 31, 33, 35-39, 42-48], whilst one study used cervical level
injury (n=1) [32].

Eight different cannabinoid receptor agonists were used as seen in
Fig. 3. WIN 55212-2 (n=6) [30, 33, 35, 36, 38, 40] was the most
commonly used agonist. Palmitoylethanolamide (PEA) [43, 47] and
cannabidiol (CBD) [42, 46] were each used in 2 studies. CP 55,940 [39],
JWH [32], N-(2-chloroethyl)—5Z, 87, 11Z, 14Z-eicosatetraenamide
(ACEA) [44], oxazoline of Palmitoylethanolamide [45] and co-
ultramicronised PEA and luteolin [48] were each used in 1 study.
Two different inverse cannabinoid receptor agonists were used:
rimonabant (n=2) [38, 39] and hemopressin (n=1) [38]. Five
cannabinoid receptor antagonists were also used, with AM 630 (n=
8) [30, 31, 33-35, 37, 40, 41] and AM 251 (n =7) [30, 33-35, 37, 40, 41]
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being the most commonly used. Other antagonists used included SR
144528 (SR 2) (n =2) [32, 39] and AM 281(n = 1) [31]. One study used
acetaminophen and naloxone [37]; both drugs have been reported to
have effects on the endocannabinoid system. Initiation of cannabinoid
administration ranged from 20 min [30] to 5 weeks [35] after SCI. The
duration of cannabinoid administration ranged from single one-off
doses to repeat dosing over 10 weeks [46]. A comprehensive summary
of the drugs used in the included studies can be found in
the Supplementary Material.

Across the included studies, locomotor function was eval-
uated by 13 studies, pain perception was evaluated by 8 studies
and 1 study explored anxiety. 8 different measures of locomotor
function were used (summarised in Fig. 4A). The most
commonly used measures of locomotor function were Basso
Mouse Scale (BMS) (n=15) [44-48], Basso, Beattie, Bresnahan
(BBB) Locomotor score (n=4) [31, 33, 42, 43] and 14-point
motor deficit index (MDI) score (n=2) [34, 40]. Beam-walking
test [32], CatWalk [32], rodent rotarod) [44], spontaneous open-
field locomotor activity [44] and Tarlov scoring system [41] were
each used once. Two measures of pain were used (summarised
in Fig. 4B), namely the von Frey filament test (n =5) [31, 35-39]
and hind paw withdrawal to thermal stimulus (n = 3) [30, 31, 46].
The elevated plus-maze test [44] was the sole measure of
anxiety (n=1). No studies assessed the sedative effects of
cannabinoids. Table 2 summarises all of the scoring systems
used to evaluate outcomes. Assessment time points ranged
from 30 min [35] to 90 days [31] after cannabinoid administra-
tion. Table 3 groups the included studies by neurobehavioural
outcome, and summarises the sample features, injury models,
interventions, assessment tools and key findings. Figs 2 and 3
investigate the effects of specific cannabinoid interventions and
injury model on locomotor and pain, and highlight the
heterogeneity of the included studies. Fig. 4 visually represents
the overall effects of cannabinoids on locomotor function and
pain. Further information relating to individual studies can be
found in the Supplementary Material.

Risk of bias

Allocation sequence was adequately generated and applied in 12
out of 19 studies, the remaining studies may have been
randomised but did not describe their allocation sequence. Four
studies stated that group neurobehavioural characteristics were
similar to baseline. No studies stated if the allocation was
adequately concealed or if animals were randomly housed during
the experiment. No studies stated if animals were selected at
random for outcome assessment. The outcome assessor was
blinded in 7 out of 19 studies; however, no studies explicitly stated
that caregivers or investigators were blinded. One study stated
one mouse in the vehicle group died but provided no further
information regarding under what circumstances this occurred. A
lack of reporting of items on the SYRCLE checklist across the 19
included studies means that accurately determining the risk of
bias is challenging. This means that the overall risk of bias remains
unclear and all results must be interpreted in the context of this.
Full details of risk of bias assessment are provided in the Supple-
mentary Material.

What is the impact of cannabinoids on locomotor outcomes?
13 studies assessed locomotor outcomes of which five assessed
BMS [44-48], four assessed BBB locomotor score [31, 33, 42, 43],
two assessed 14-point MDI [34, 40]. Rodent rotarod [44],
spontaneous open-field locomotor activity [44], beam walking
[32], tarlov score [41] and catWalk assessment [32] were each used
in one study.

Basso Mouse Scale (BMS) score. Five studies assessed BMS score

of which one used ACEA [44], one used CBD [46], two used PEA
[47, 48] and one used PEA-OXA [45].
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Hong et al. observed that ACEA treated mice had higher BMS
scores at 21 days post-SCl compared to vehicle (ACEA=8+3,
vehicle=5+6, p=0.02) [44]. By 3 weeks post-SCl most mice in
both ACEA and vehicle-treated groups were able to use hindlimbs
to support body weight (BMS score >5) [44]. However, a greater
number of mice were able to co-ordinate forelimb, hindlimb and
tail function (BMS=9) in the ACEA treated group (5 of 12)
compared to the vehicle-treated group (0 of 11) (p = 0.02) [44].

CBD treatment was not shown to produce a significant effect on
BMS scores compared to vehicle-treated mice over a period of
10 weeks post-SCl in the study by Li et al. [46].

Of the two studies using PEA [47, 48], 1 used PEA alone and in
combination with PPAR-y and PPAR-6 antagonists GW9662 and
GWO0660 [47] in wild type (WT) and PPAR-a knock-out (PPAR-aKO)
mice. The other used PEA alone, PEA associated with luteolin
(flavindoid with antioxidant properties) and a co-ultramicronised
composite of PEA and luteolin [48] in WT mice. Both studies
induced SCI using microvascular clips and recorded BMS scores
daily for 10 days post-SCl. Treatment of WT mice with i.p. PEA
(10 mg/kg) exclusively produced a significant increase in BMS
scores in one study (p < 0.05) [47]. Pre-treatment with GSK0660 or
GW9662 abolished the PEA-induced increase in BMS score [47].
Similarly the genetic absence of the PPAR-a receptor blocked the
effect of PEA treatment [47]. In the other study, treatment of WT
mice with i.p. PEA (Tmg/kg) did not produce a significant increase
in BMS scores. Treatment with PEA associated with luteolin also
did not improve BMS scores compared to vehicle-treated control
mice (p>0.05) however, treatment with the co-ultramicronised
composite of PEA and luteolin significantly reduced motor
disturbance after SCl(p < 0.01) [48].
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PRISMA flow diagram of study selection. Number of studies identified, screened, assessed for eligibility and included are shown.

Using PEA-OXA, Impellizzeri et al. found treatment with 10 mg/kg
significantly improved BMS scores post-SClI compared to vehicle-
treated mice, and the effect was maintained until the end of the 10-
day post-SCl experimental period (p < 0.05) [45].

Basso, Beattie, Besnahan (BBB) Locomotor Score. Of the
four studies that assessed BBB score, one used PEA [43], one used
WIN 55,212-2 alone and in combination with AM 251 or AM 630
[33], one used AM 251 and/or AM 630 [31], and one used CBD [42].
Genovese et al. found pre- or post-treatment with PEA
significantly reduced the functional deficits induced by SCI over
a 10-day period following SClI (p<0.05 compared to vehicle-
treated controls) [43]. No significant difference was found between
PEA administered as a pre- or post-treatment [43]. WIN 55,212-2
was shown to promote functional recovery, measured by BBB
score, following SCI [33]. BBB scores of WIN 55,212-2 treated
animals continued to improve until 3 weeks following SCI at which
point they scored more than 12, whereas BBB scores of control
animals plateaued 1 week post-SCl (p <0.0001) [33]. Significant
differences were noted between WIN 55,212-2 and control-treated
animals from day 7 to day 28 post-SCl (p < 0.01 at each individual
timepoint) [33]. Pre-treatment with AM 630 (CB2 R antagonist) but
not AM 251 (CB1 R antagonist) reversed the improvement induced
by WIN 55,212-2 treatment (p =0.0001 and p=0.1879 respec-
tively) [33]. In the study by Kwiatkoski et al. control rats and CBD
treated rats both scored zero on the first day after SCI [42].
However, on day 3 and 7, CBD treated rats obtained higher BBB
scores compared to controls (Day 3, CBD treated rats median = 2,
vehicle-treated rats median = 0.5; p < 0.05. Day 7, CBD treated rats
median = 7, vehicle-treated rats median =4.5; p < 0.05) [42].

Spinal Cord (2021) 59:1221-1239
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Fig. 2 Visual representation of injury models used to assess locomotor function (A) and pain (B). Number of studies using each injury
model and the reported effects on locomotor function (A) and pain (B) are shown.

Using the selective CB1 R and CB2 R antagonists, AM 281 and AM
630, Arevalo-Martin et al. found the no difference between the BBB
scores of cannabinoid antagonist and vehicle-treated mice at day 7
and 14 post-SCI [31]. At day 30, 60 and 90 cannabinoid antagonist
treated mice scored significantly lower that vehicle-treated mice
(Day 30: AM630; p < 0.05, AM281 + AM630; p < 0.05. Day 60: AM281;
p<0.05, AM630; p<0.05, AM281+ AM630; p<0.001. Day 90:
AM281; p <0.05, AM630; p < 0.05, AM281 + AM630; p < 0.05), with
antagonist treated mice reaching a plateau at day 30 compared to
vehicle-treated mice which continued to improve until day 60 [31].

The 14-point motor deficit index score. Two studies assessed the
14-point motor deficit (MDI) score [34, 40]. Huo et al. studied the
effects of WIN 55,212-2 alone and alongside AM 251 or AM 630
following spinal cord ischaemia [40]. Su et al. investigated the
effects of CB1 and CB2 receptor antagonists, AM 251 and AM 630,
on the ischaemic tolerance induced by remote ischaemic
preconditioning (RIPC) prior to ischaemia/reperfusion injury [34].

Following spinal cord ischaemia, WIN 55,212-2 treatment was
observed to reduce the MDI score compared to control treatment
(WIN 55,212-2 median = 2.5, interquartile range (IQR)=1.25,

Spinal Cord (2021) 59:1221-1239

control median=5, IQR=2; p<0.05) [40]. This improvement
was noted to be reversed by CB2 receptor antagonism with AM
630 but not by CB1 receptor antagonist with AM 251 (WIN 55,212-
2 median =25, IQR=1.25, WIN 55,212-2 + AM630 median =5,
IQR=1.25; p<0.01, WIN 55,212-2 + AM251 median = 2.5, IQR =
1.25; p > 0.05) [40].

Su et al. observed no difference between the MDI scores of rats
treated with RIPC, AM 630 + RIPC, and vehicle + RIPC. The MDI
scores of rats treated with RIPC was significantly lower than AM
251 + RIPC treated rats (p <0.05). No significant difference was
recorded between the MDI scores of rats treated with AM251 +
RIPC, AM 251, AM 630 or vehicle.

Rodent rotarod. One study assessed rodent rotarod performance
[44]. Hong et al. found ACEA (3 mg/kg/day) treatment improved
rotarod function over the 21 day recovery interval compared to
vehicle treatment (p = 0.04) [44].

Spontaneous open field locomotor activity. One study assessed

open field locomotor activity of mice treated with ACEA. ACEA was
not found to affect spontaneous activity post-SCl [44].

SPRINGER NATURE
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Effect of cannabinoid receptor agonists on outcomes assessing

locomotor function

Number of studies
N

Cannabidiol
CP55,940
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ACEA

B Worsened outcome

Number of studies @
N

Cannabidiol
CP55,940
JWH

B Worsened outcome

No effect on outcome

ACEA

No effect on outcome
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Effect of cannabinoid receptor agonists on outcomes assessing pain
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B Improved outcome

Fig. 3 Visual representation of cannabinoid receptor agonists used to assess locomotor function (A) and pain (B). Number of studies
using each cannabinoid receptor agonist and the reported effects on locomotor function (A) and pain (B) are shown.

Beam-walking test. Latini et al. found rats treated with either
JWH-015, SR2, or saline after lateral cervical spinal cord hemisec-
tion all displayed uniform severe motor impairments at day 1
post-SCI [32]. From day 3 post-SCl onwards, rats treated with JWH-
015 had better beam-walking scores than saline (p <0.001) and
SR2 (p<0.0001) treated rats [32]. No differences in score were
observed between rats treated with SR2 or saline [32].

CatWalk. Using CatWalk video analysis, Latini et al. found all rats
treated with either JWH-015, SR2 or saline to display clear deficits
in all parameters on day 7 post-SCl [32]. However, from day 7 to
day 60 post-SCl, JWH-015 treated rats achieved significantly better
print length (p <0.001), print width (p <0.0001), print area (p <
0.001), regularity index (p <0.0001) and maximum contact area
(p<0.001) than both SR2 and saline-treated rats [32]. No
differences were observed between saline and SR2 treated rats
[32].

Tarlov scoring system. One study assessed neurological function
using the Tarlov scoring system [41]. Jing et al. studied the effect
of AM 251 and AM 630 pre-treatment on the neuroprotective
effects of RIPC prior to ischaemia/reperfusion injury [41]. At 4h
after reperfusion, AM 251 pre-treatment -+ RIPC treated rats
achieved significantly lower Tarlov scores compared to rats
subject to RIPC only (p<0.05) [41]. The scores of RIPC only,
AM630 pre-treatment + RIPC, and vehicle pre-treatment + RIPC

Spinal Cord (2021) 59:1221-1239

treated mice were not significantly different at this time point [41].
At 24 h post-reperfusion, both AM 251 and AM 630 pre-treatment
statistically abolished the neuroprotective effect of RIPC as
measured by Tarlov scores (p < 0.05) [41].

What is the impact of cannabinoids on pain outcomes?

Eight studies assessed pain outcomes of which seven used the
von Frey filament test [31, 35-39, 46] and three assessed hind paw
withdrawal thresholds [30, 31, 46].

Von Frey filament test. Of the seven studies assessing mechanical
sensitivity using the von Frey filament test, one study used CBD
[46], three used WIN 55,212-2 [35, 36, 38], one used CP 55,940 [39],
one used hemopressin [38], two used rimonabant [38, 39], one
used AM 251 [35, 37], one used AM 281 [31], three used AM 630
[31, 35, 37], and one used SR 144528 [39]. One study used
acetaminophen either alone or in combination with gabapentin,
memantine, morphine or tramadol [37].

The study by Li et al. found no significant main effect of CBD
treatment on right hindpaw von Frey filament scores [46].
Changes in mechanical sensitivity were noted to be variable
between mice and between the left and right paw of individual
mice, with both increases and decreases in sensitivity observed
[46].

Of the two studies that administered WIN 55,212-2 subcuta-
neously, one administered WIN 55,212-2 as a single dose at

SPRINGER NATURE
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Fig. 4 Visual representation of the effect of cannabinoids on locomotor function (A) and pain (B). Effect of cannabinoids on locomotor
function (A) and pain (B) stratified by outcome measure is shown. Frequency of outcome measure use is also indicated.

4-5 weeks post-SCl [35] and one administered WIN twice daily for
7 days beginning 4 weeks post-SCl [36]. Both studies found WIN-
55,212-2 increased withdrawal thresholds in a dose-dependent
manner (p < 0.05 in both studies) [35, 36]. This was observed for 2
h following single WIN 55,212-2 treatment by Hama et al. [35] and
30 min after each WIN 55,212-2 injection by Hama et al. [36]. The
antinociceptive effect of WIN was maintained throughout the
duration of the 7 day experimental period in the Hama et al.(2009)
study [36]. Pre-treatment with AM 251 but not AM 630 was
observed to block the antinociceptive effect of subcutaneous WIN
55,212-2 [35].

Hama et al. [38], investigated the effects of centrally mediated
CB receptor ligands following SCI [38]. Intrathecal WIN 55,212-2
(57.4 nmol) significantly increased withdrawal thresholds from 30
min post-administration to 120 min post-administration (p < 0.05).
Lower doses of intrathecal WIN 55,212-2 were not reported to
affect withdrawal thresholds [38]. Intracerebroventricular WIN
55,212-2 produced a dose-dependent antinociceptive effect at 30
min post-administration, but not at any other time point (p < 0.05
at 30 min) [38].

Intrathecally injected hemopressin and rimonabant did not
significantly alter hind paw withdrawal threshold [38]. Hemopressin
administered either as a pre-treatment intrathecally or as an
intracerebroventricular co-treatment with WIN 55,212-2 did not alter
the antinociceptive effect of intrathecal WIN 55,212-2 [38]. By contrast
intrathecal rimonabant pre-treatment blocked the antinociceptive
effect of intrathecal WIN 55,212-2 (p < 0.05 compared to vehicle pre-
treatment) [38]. Subcutaneous pre-treatment with rimonabant
blocked the antinociceptive effect of intracerebroventricular WIN
55,212-2 (p < 0.05 compared to vehicle pre-treatment) [38].

Arevalo-Martin et al. observed no difference between rats treated
with AM 281 (3 mg/kg), AM 630 (3 mg/kg) or a combination AM 281

SPRINGER NATURE

(3mg/kg) and AM 630 (3mg/kg), and rats treated with vehicle
following SCI [31].

Hama et al. [39] found CP 55,940 increased withdrawal threshold
compared to vehicle in a dose-dependent manner (p <0.05) [39].
Peak efficacy was not observed until 60-90 min following injection of
lower doses (0.03 and 0.1 mg/kg) but was observed rapidly following
injection with the highest dose (0.3 mg/kg) [39]. Hama et al. [39]
noted the antinociceptive effect of CP 55,940 was maintained at full
efficacy with twice-daily dosing over a 7-day observation period [39].
Pre-treatment with the CB1 receptor antagonist rimonabant (p < 0.05)
but not the CB2 receptor antagonist SR 144528 (p > 0.05) blocked the
effect of CP 55,90 [39].

Hama et al. [37] studied the effects of using acetaminophen alone
or in combination with other analgesics on mechanical sensitivity,
measured using the von Frey filament score, and presented as a
percent maximum possible effect [37]. The maximum possible effect
of acetaminophen (100 mg/kg) at 60 and 90 min post-SCl were not
significantly different to that of vehicle-treated rats [37]. Combinations
of acetaminophen with either gabapentin or morphine produced
statistically significant synergy (p < 0.05 compared to effects of drugs
used individually) [37]. Combinations of acetaminophen with either
memantine or tramadol did not produce any statistically significant
synergy (p > 0.05 compared to effects of drugs used individually) [37].
Pre-treatment with AM 251 but not AM 630 significantly attenuated
the antinociceptive effect of the acetaminophen + gabapentin
combination (AM 251 compared to vehicle pre-treatment; p < 0.05)
[37]. Pre-treatment with AM 251 significantly attenuated the
antinociceptive effect of the acetaminophen + morphine combina-
tion with morphine however, a significant residual antinociceptive
effect remained (AM 251 compared to vehicle pre-treatment; p < 0.05)
[37]. Similarly, pre-treatment with AM 630 partially decreased the
antinociceptive effect of acetaminophen with morphine, leaving a

Spinal Cord (2021) 59:1221-1239
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Assesses hindlimb movement, paw placement, weight bearing, trunk stability, tail
position and limb coordination. Scored from 0 to 21; 0 is no hindlimb movement, 21 is

Assesses the severity of SCl-induced paralysis based on hindlimb movement. Scored
Assesses vestibulomotor function using an accelerating rotarod and measuring latency
Assesses locomotor activity using a computerised video capture system.

Assesses motor function deficits in the hind limbs using a 14-point score. 0 is normal

motor function, 14 indicates no movement and dragging of hind limbs.
Assesses fine-motor behaviour using an elevated narrow beam. Scored from 0 (rat

unable to traverse the beam) to 6 (rat traversed beam normally).

Assesses locomotor gait dynamics using the catWalk gait analysis system (version 8.1;

Noldus, Wageningen, The Nederlands).

Assess neurological function on a scale of 0 (no lower extremity function) to 4 (normal

Assess sensitivity to innocuous mechanical stimulation using von Frey filaments. The

smallest filament that elicits a response is recorded.

Assesses sensitivity to thermal stimulation (hot or cold). Withdrawal latency time is

Table 2. Summary of functional outcome tools used in included studies.
Outcome Scales Summary of tool
Locomotor Basso, Beattie, Besnahan (BBB) Locomotor
[27, 29, 30, 41]
normal function.
Locomotor Basso Mouse Scale (BMS) [28, 36-39]
from O to 9.
Locomotor Rodent rotarod [39]
time for mice to fall.
Locomotor Spontaneous open field locomotor
activity [39]
Locomotor 14-point motor deficit index (MDI) score
[40, 43]
Locomotor Beam-walking test [42]
Locomotor CatWalk [42]
Locomotor Tarlov scoring system [44]
motor function).
Pain von Frey filament test [27, 28, 31-35]
Pain Hind paw withdrawal to thermal stimulus
[26-28] measured.
Anxiety Elevated plus maze test [39]

Assesses anxiolysis using an elevated platform with two open arms and two closed

arms. Number of open arm and close arm entries are recorded.

residual antinociceptive effect (AM 630 compared to vehicle pre-
treatment; p <0.05) [37]. Although the acetaminophen + tramadol
combination did not produce statistically significant synergy, Hama
et al. [37]. found pre-treatment with AM 251 but not AM
630 significantly attenuated the effect of the combination (AM 251
compared to vehicle pre-treatment; p < 0.05) [37]. Pre-treatment with
either AM 251 or AM 630 before vehicle treatment did not
significantly affect withdrawal thresholds [37].

Hind paw withdrawal to thermal stimulus. Three studies assessed
hind paw withdrawal to thermal stimulus [30, 31, 46]. One study
treated rats with WIN 55,212-2 alone or in combination with the
CB1 or CB2 receptor antagonists AM 251 and AM 630 [30]. One
study involved treatment with AM 281 and AM630 alone and in
combination. One study treated mice with CBD [46].

Ahmed et al. found that WIN 55,212-2 treatment after SCI (0.2
mg/kg and 2.0 mg/kg) increased withdrawal thresholds from a
thermal noxious stimulus, measured on post-injury day 42, in a
dose-dependent manner (WIN 55,212-2 0.2mg/kg increased
hindpaw withdrawal latency from 9.5+ 0.4 s to 11.1+0.5s on day
42 post injury; p <0.05. WIN 55,212-2 2 mg/kg increased hindpaw
withdrawal latency from =8.4+04 s to 10.7 £ 0.4 s on day 42 post
injury; p <0.0001) [30]. Pre-treatment with AM 630 (3 mg/kg) but
not AM 251 (3 mg/kg) was found to significantly decrease the anti-
hyperalgesic effect of subsequent WIN 55,212-2 i.p. injection (After
AM 630 pre-treatment 99+06s, after WIN 55-212,2 post-
treatment 8.6+ 1.0s; p>0.05. After-AM 251 pre-treatment 9.7 +
0.6s, after WIN 55-212,2 post-treatment 12.0+0.7s; p <0.0001)
[30].

Arevalo-Martin et al. reported no notable difference in hind paw
withdrawal from hot or cold plates when rats were treated with AM
281 (3 mg/kg) and/or AM 630 (3 mg/kg) [31]. A transient increase in
hind paw withdrawal time from a cold plate was observed in rats
treated with AM 281 or AM 630 at day 60 compared to vehicle-
treated rats (p < 0.05) but this was not maintained at day 90 [31].

Li et al. found CBD treatment to be associated with a reduction in
thermal sensitivity following thoracic contusion injury [46].

Spinal Cord (2021) 59:1221-1239

What is the impact of cannabinoids on anxiolysis?

Hong et al. used the elevated plus-maze test to investigate the
anxiolytic effects of ACEA post-SCl. No anxiolytic effect of ACEA
(3 mg/kg/day) was observed [44].

DISCUSSION

The aim of this systematic review was to evaluate the effect of
cannabinoids on neurobehavioral outcomes in preclinical models
of SCl. Overall, cannabinoid receptor agonists ACEA, CBD, CP
55,950, JWH-015, PEA, PEA-OXA and WIN 55,212-2 were reported
to produce significant improvements across a range of neurobe-
havioral outcomes assessing locomotion and pain. However, as
aforementioned, a lack of adherence to reporting items on the
SYRCLE checklist mean that accurately assessing risk of bias is
challenging, and therefore the overall risk of bias and validity of
the reported outcomes remain unclear. Comparison between
studies and drugs are currently limited by heterogeneity in
species, strain, age, injury model, dosing, route of administration,
and differences in the timing of neurobehavioural assessments.

What is the proposed mechanism of action?

WIN 55,212-2 was observed to improve BBB locomotor score, hind
paw withdrawal to thermal stimulus and von Frey filament test
scores when administered i.p., s.c. and i.t. [30, 33, 35, 36, 38, 40].
However, improvement was only noted at one time point (30 min
post administration) in one study [38].

The effects of WIN 55,212-2 were noted to be blocked by CB1 R
antagonists in 2 two studies [30, 35] and CB2 R antagonists in two
studies [33, 40]. The endo-CB system is thought to be modulated
in two phases following SCI [11]. An initial, acute phase in the first
week of SClI is characterised by increased levels of the CB1
receptor-specific endo-CB AEA and high levels of CB1 receptor
expression on neurons and oligodendrocytes [11]. This acute
phase is considered important for neuronal survival [11]. Two to
three weeks after SCI, in the chronic phase post-SCl, levels of the
non-specific CB receptor endo-CB agonist 2-AG and CB2 receptors

SPRINGER NATURE
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in macrophages and astrocyte like cells increase [11]. Increased
IL-10 release from CB2 receptor-expressing macrophages has
been proposed as a mechanism for CB2 receptor-mediated
analgesia post-SCl [30]. Thus, the effects of WIN 55,212-2 following
SCl may be mediated by its actions on both the CB1 and CB2
receptors.

Following spinal cord ischaemia, Huo et al. showed WIN 55,212-
2 improved motor function, as measured by the 14-point MDI
score, reduced apoptosis and improved survival of neurons [40].
Mechanistically, both Huo et al. and Su et al. showed WIN 55,212-2
treatment blocked nuclear translocation of GAPDH, formation of
GAPDH/Siah1complexes and iNOS expression in the spinal cord
after spinal cord ischaemia or traumatic SCI [33, 40]. GAPDH/Siah1
activity is correlated with apoptosis after ischaemic injury, thus it is
proposed that WIN 55,212-2 improves functional recovery
following SCI via inhibition of GAPDH/Siah1 signalling cascades
and reduction in iNOS expression [33, 40].

Importantly, Hama et al. found the antinociceptive efficacy of
WIN 55,212-2 to be maintained over a twice-daily 7-day treatment
regimen, whereas the efficacy of morphine decreased over the
same period [36]. Tolerance is a major problem with existing SCI-
pain medications, hence the sustained efficacy of WIN 55,212-
2 suggests that cannabinoid receptor agonists may be useful in
alleviating chronic pain after SCI [36].

Potent anti-inflammatory effects of PEA were demonstrated by
Genovese et al. who found that following SCI, PEA reduced the
degree of spinal cord damage, neutrophil infiltration, NF-kB
activation, |kB-a degradation, nitrotyrosine formation, proinflam-
matory cytokines production, apoptosis, Bax and Bcl-2 expression
and PPAR-a degradation [43]. Paterniti et al. provided further
evidence supporting the role of PPARs in the mechanism of action
of PEA, finding the anti-inflammatory effects of PEA were
antagonised by administration of PPARy and PPARd antagonists,
and abolished in PPARa KO mice [47]. Furthermore, another study
by Paterniti et al. showed a co-ultramicronised composite of PEA
and luteolin restored basal expressions of PPARa, B, 6 and y post
SCI [48]. Collectively, these studies suggest a significant anti-
inflammatory role of PEA post-SCl.

Impellizzeri et al. found PEA-OXA treatment significantly
improved BMS scores and reduced histological alterations post
SCl. Mechanistically, PEA-OXA was noted to reduce astrocyte
activation and increased neurotrophic factors BDNF, GDNF and
NT-3 suggesting PEA-OXA has neuroprotective properties. PEA-
OXA, similar to PEA, was observed to have anti-inflammatory
effects, reducing degradation of IkB-a (a regulatory protein of NF-
kb), and reducing expression of iNOS and COX-2, as well as the
release of the pro-inflammatory cytokines TNF-a and IL-1b [45].

ACEA treatment was found to improve both functional and
histological outcomes post SCl [44]. Hong et al. identified that
ACEA treatment decreased matrix metalloproteinase-9 (MMP-9).
MMP-9 is known to be expressed in neurons, reactive astrocytes,
infiltrating leucocytes and increased activity results in blood-spinal
cord barrier disruption and decreased functional recovery follow-
ing SCI [49].

Two studies implicated the endo-CB system as having a role in
the protective effects of RIPC prior to ischaemia/reperfusion injury
[41, 34]. Firstly, RIPC has been observed to increase AEA content in
the spinal cord following ischaemia/reperfusion injury [34].
Secondly, both Jing et al. and Su et al. reported cannabinoid
receptor antagonists reduced the protective effects of RIPC. Jing
et al. found the protective effects of RIPC to be reduced at 4 h
post-ischaemia/reperfusion injury by CB1, but not CB2, receptor
antagonist pre-treatment [41]. At 24 h post-ischaemia/reperfusion
injury pre-treatment with either CB1 or CB2 receptor antagonists
abolished the neuroprotective effect of RIPC [41]. This implies
involvement of both CB1 and CB2 receptors in the protective
effects of RIPC. The findings of Su et al. differed to those of Jing
et al.. Su et al. report that the protective effects of RIPC were only

Antinociceptive effects of CP
55,940 was maintained at full
efficacy throughout 7 day

experimental period.
* Experiment 3: Pre-treatment

Key findings

+ Experiment 1: CP 55,940
produced dose-dependent
increase in withdrawal
thresholds (p < 0.05).

+ Experiment 2:

with rimonabant, but not SR
144528 blocked the effect of
CP 55,940 (p < 0.05).

Before injection,
every 30 min up
to 120 min post

injection.
treatment): After
8 am injection

for 7 days.
administration):

(Antagonist pre-
treatment
before CP
Before pre-
after treatment.

(Acute dose of
55,940

CP 55,940):
* Experiment 2

(Repeat drug
* Experiment 3

* Experiment 1

treatment and
30 and 60 min

Time of

d

Outcomes
* von Frey
filament test

escalation study?

Dose
* Yes

Cannabinoid

receptor
agonists used

* Rimonabant
* SR 144538

antagonists
or inverse

Cannabinoid receptor

agonists used
+ CP 55,940

Level
of injury
T6-7

spinal cord for 1

min using
microaneurysm

Injury model
Traumatic SCI
Compression of
clip (209)

Number of
animals
120

Animal used
Sprague-
Dawley rats

Table 3 continued
Author (Year)

Hama et al.

(2014) [36]
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reversed by CB1 R antagonists at 24 and 48 h post ischaemia/
reperfusion injury, implicating involvement of only the CB1
receptor [34]. Therefore, whilst these findings support the
involvement of the endo-CB system in RIPC, it is not clear whether
both of the cannabinoid receptors are involved.

Evaluation of pre-clinical evidence base

A large degree of heterogeneity exists in the spinal cord injury
models utilised by the included studies, as highlighted in Fig. 2.
Each model induces different injuries with different pathophysiol-
ogy. This is important when considering the potential translation
of pre-clinical experiments into human studies. Each model has
specific advantages and limitations (summarised in Table 1), and
different types of preclinical SCI model may be required to address
specific research questions. For example, transection models are a
useful method of exploring neuronal regeneration and degenera-
tion, but the pathophysiology of the injury is different to the
contusive injury mechanisms more commonly seen in humans
[50]. Contusion models are typically regarded as most representa-
tive of acute, traumatic SCl, whereas the more chronic injury
produced by some compression models may be more represen-
tative of conditions such as degenerative cervical myelopathy [51].
The age of animals used provided another source of hetero-
geneity. Differences in animal age limit interpretation of the
included studies as functional behaviours and regeneration after
SCI may differ depending on animal age [52]. It is important that
future pre-clinical work carefully considers which aspects of
human pathology they aim to mimic through animal models, and
choose a pre-clinical model and outcomes measures that
appropriately reflect this.

There is also heterogeneity amongst the cannabinoid receptor
agonists used in the included studies as seen in Fig. 3. WIN 55,212-
2 was the most used compound and was noted to produce
improvements in both locomotor and pain outcomes
[30, 33, 35, 36, 38, 40]. Within those studies that used WIN,
various routes of administration were used including intraper-
itoneal, subcutaneous, intrathecal and intracerebroventricular
routes. Furthermore, dosing protocols varied between one off
doses and repeat injections. These differences have important
clinical implications as some routes of administration (e.g.
subcutaneous injection may be easier than others, e.g. intrathecal
injection or intracerebroventricular drug administration). The
studies included in this review focus primarily on the pharmaco-
dynamics of cannabinoid receptor agonists. However, before
clinical trials can be considered, the pharmacokinetics and toxicity
of these compounds must also be investigated. Thus, given that
multiple compounds have shown improvements in locomotor
function and pain scores, future work will need to determine
which of these may be most amenable to human translation. This
will require essential work investigating pharmacokinetics and
distribution, safety and off-target effects, and logistical considera-
tions such as the stability of compounds and shelf-life for use in
the clinical environment. Future pre-clinical studies should aim to
reach a consensus on lead compounds, explore suitable, clinically
relevant dosing regimens, and determine acceptable clinical
trade-offs such as the route and frequency of administration.

In our analysis, multiple items from the SYRCLE checklist were
not commented on by all 19 studies, including whether animals
were randomly selected for outcome assessment, or whether
allocation was adequately concealed, and caregivers or investiga-
tors were blinded [29]. Due to this, risk of bias remains unclear for
the included studies. This appears to be a common problem in the
preclinical cannabinoid evidence base. The IASP Presidential
Taskforce on Cannabis and Cannabinoid Analgesia identified
similar challenges, including the unclear risk of bias due to lack of
reporting of methodological criteria [25]. They posit this may be
due to reporting of these terms not previously being required by
journals for publication [25]. Future pre-clinical trials should be
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encouraged to follow the ‘Animal Research: Reporting of In Vivo
Experiments’ (ARRIVE) guidelines to improve the quality of
evidence generated [53].

Opportunities for translational clinical trials

The beneficial effects of cannabinoid agonists on outcomes
assessing pain and locomotor function in animal models of SCI
strengthens the argument that there may be scope for the endo-
cannabinoid system to be harnessed in the treatment of motor
and pain-related symptoms seen following human SCI. Despite
many of the drugs discussed in this systematic review not being
licensed for clinical use, there are now well-tolerated cannabinoid
agonists used in clinical practice. These drugs may represent
opportunities for translational clinical trials, bypassing the lengthy
and costly process of licensing novel drugs. Sativex and Epidolex
are two such drugs. Sativex, an oromucosal spray containing
tetrahydrocannbinol and cannabidiol has been licensed in the
United Kingdom since 2010 for the treatment of spasticity and
other symptoms of multiple sclerosis [54]. Epidolex, a 99% pure
oral CBD extract, was the first of its kind to be licensed by the FDA
in June 2018 for the treatment of Lennox-Gastaut syndrome,
Dravet syndrome and other severe forms of epilepsy [55]. A
further three synthetic cannabis-related drug products have
since been FDA approved, namely Marinol (dronabinol),
Syndros (dronabinol), and Cesamet (nabilone). Existing clinical
data from Sativex and Epidolex found diarrhoea, fatigue,
somnolence, vomiting and pyrexia to be common adverse events
but otherwise noted the drugs to be well tolerated [54, 56, 57].
This provides some insight into how these drugs might be
tolerated if they were to be delivered following SCI as part of
human clinical trials.

Hama et al. similarly investigated whether combinations of
currently licensed drugs (i.e. drug repurposing) could be used to
treat pain after SCI [37]. In particular combinations involving
acetaminophen, which is proposed to act in part by blocking
cellular uptake of anandamide [58, 59]. Combinations of
acetaminophen with gabapentin or morphine displayed synergy
which was attenuated using CB receptor antagonists implying
involvement of the CB receptor activation [37]. The benefits of
using such existing drugs include the avoidance of long periods of
drug development and licensing as well as the ability to use lower
doses to avoid side effects that may otherwise limit the use of
such drugs.

Whilst these drugs represent promising opportunities, animal to
human translation can be unpredictable and key research
questions remain. Firstly, consensus must be reached regarding
the optimal cannabinoid drug, dose, and determine what would
constitute a clinically acceptable route of administration (particu-
larly if repeated dosing is required). The current preclinical
evidence base remains heterogenous, and it is difficult to
reconcile inconsistencies between studies when variables such
as the model of SCI, timing of drug administration, outcome
assessment tool and timing of outcome assessment differ from
study to study. Similar variation has been reported in a systematic
review of the literature on the effects of cannabinoids in patients
who have suffered SCI [23]. We echo their call for appropriately
powered, randomised controlled studies with standardised out-
come measures, which conform to Consolidated Standards of
Reporting Trials, to increase the amount of good quality evidence
on this topic. Secondly, there is currently little pre-clinical or
clinical literature exploring the long-term effects of chronic
cannabinoid use following SCI [23], and this would be worthy of
further study. Of the studies included in this review, none explored
the effects of administering cannabinoids beyond 10 weeks
following SCI. Cannabinoids have been associated with addiction,
cognitive decline, sedation, and psychotic disorders [60]. Given
that SCI patients may need to use cannabinoids for a number of
years, long-term longitudinal studies monitoring the incidence of
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such side-effects will be required if cannabinoids are to be
considered in the management of these patients.

Strengths and limitations. Strengths of this review include the
following: (1) the search strategy was extensive, (2) each article
was independently evaluated for inclusion by 2 reviewers
independently evaluated each for eligibility, (3) risk of bias was
assessed using the SYRCLE risk of bias tool and (4) the review used
the PRISMA guidelines and checklist to structure the review.

This review presents a qualitative, not quantitative, analysis of
the existing literature. Meta-analysis was prevented by the low
number of studies included and the high degree of heterogeneity
in injury model, drug, dose, route of administration, timing of
administration, outcome tools, timing of assessment. The overall
quality of individual studies was poor due to small sample sizes
and failure to satisfy a number of the components of the SYRCLE
checklist. Furthermore, due to the relatively small amount of
literature on the topic and reliance on what has been reported
there is high risk of publication bias. Linking these pre-clinical
results to potential clinical findings is difficult given the large
differences between animal models of SCl and the injuries seen in
patients. Moreover, important side-effects such as sedation and
addiction which may have clinical implications were not evaluated
in this systematic review. Additional limitations include the
exclusion of studies evaluating histological changes and those
studies not in English language. Authors of included studies were
not contacted to obtain additional information on unpublished or
planned studies.

CONCLUSION

The results of these studies demonstrate that modulation of the
endo-cannabinoid system has significant benefit for both pain and
locomotor function across a range of pre-clinical models of acute
spinal cord injury. Due to low adherence of reporting items on the
SYRCLE checklist, the risk of bias and validity of the reported
outcomes remains unclear. Meta-analysis could not be conducted
due to small sample sizes and large variation in study design. This
highlights the need for additional high-quality preclinical studies
with consistent methodology to evaluate the efficacy of canna-
binoids in treating SCI. Furthermore, before cannabinoids can be
considered in the long-term management of SCl, extensive
longitudinal studies are required to monitor the incidence of
long-term side effects such as addiction and cognitive decline.
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