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Abstract: The endocannabinoid system comprises amides, esters and ethers of long chain polyunsaturated fatty acids. N-

arachidonoylethanolamide (anandamide; ANA) and 2-arachidonoylglycerol (2-AG) are endogenous cannabinoids (endo-

cannabinoids) ligands for the cannabinoid family of G-protein-coupled receptors named CB1 and CB2. Endocannabinoids 

are released upon demand from lipid precursors in a receptor-dependent manner and behave as retrograde signaling mes-

sengers, as well as modulators of postsynaptic transmission, interacting with other neurotransmitters systems. The two 

principal enzymes that are responsible for the metabolism of ANA and 2-AG are fatty acid amide hydrolase and monoa-

cylglycerol lipase, respectively. Pharmacological experiments have shown that the administration of endocannabinoids in-

duce cannabimimetic effects, including sleep promotion. This review will focus on some of the current evidence of the 

pharmacological potential of the endocannabinoid system on sleep modulation. 

Keywords: Anandamide, cannabinoids, cannabidiol, rapid eye movement sleep, cannabinoid receptors, VDM-11.  

INTRODUCTION 

Exogenous Cannabinoids 

 During centuries, Cannabis sativa has been used in di-
verse cultures for mystical ceremonies, social interaction as 
well as for treatment of diseases [1-6]. The principal active 
compound of this plant, delta-9-tetrahydrocannabinol (

9
-

THC), was discovered by Gaoni and Mechoulam in 1964 [7]. 
It has been shown that Cannabis sativa can be used for 
therapeutic purposes, such as decreasing intraocular pressure 
in patients with glaucoma [8], and the treatment of muscle 
dysfunction in people suffering with multiple sclerosis [9]. 
Also, it reduces pain and nausea produced by both, 
chemotherapy in patients with terminal can  

 Despite the positive effects reported about the use of 
Cannabis sativa in several diseases, the administration of 
either Cannabis sativa or 

9
-THC induces negative effects 

such as DNA fragmentation and apoptosis [1, 3, 11-16]. 
Behaviourally, it is known that injection of 

9
-THC facili-

tates hypomotility, hypothermia, and antinociception [1, 3, 
13, 17, 18]. It is accepted that most of the cellular and behav-
ioural effects caused by the cannabinoids are via the activa-
tion of the cannabinoid receptor system. 
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CANNABINOID RECEPTORS 

 The cannabinoid receptors are G-protein coupled proteins 
composed of seven transmembrane spanning helices inter-
connected by three intracellular loops and three extracellular 
loops. The family of the cannabinoid receptors includes the 
CB1 and CB2 subtypes [19].  

The CB1 Cannabinoid Receptor 

 The description of the presence of the CB1 cannabinoid 
receptor in the central nervous system (CNS) was achieved 
by Herkenham et al., using quantitative radiography, these 
authors described that the distribution of the CB1 cannabi-
noid receptor includes areas such as cortex, hippocampus, 
striatum, limbic system, cerebellum, and brainstem [20]. The 
results were confirmed by Matsuda and co-workers (1990) as 
well as by further studies [21-29]. Noteworthy, the neuro-
anatomical distribution and density of the CB1 cannabinoid 
receptor in a human brain has brought tentative perspectives 
about the role of the endocannabinoid system modulating 
diverse behaviours [22, 26, 28, 30]. For example, brains of 
patients that suffered from Huntington’s disease showed a 
decrease in density of CB1 cannabinoid receptors (97%) 
compared to healthy controls [31].  

 Regarding the mechanism of action of the CB1 cannabi-
noid receptor, it includes the inhibition of cAMP formation 
[19, 32, 33] as well as a modulation in the neurotransmitters 
release. For example, the activation of the CB1 cannabinoid 
receptor inhibits of calcium (Ca

2+
) channels types P, Q and N 

and activates of the potassium (K
+
) channels [34-38]. The 

intracellular mechanism of action of the CB1 cannabinoid 
receptor is shown in Fig (1).  
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 It is known that the activation of the CB1 cannabinoid 
receptor modifies the activity of diverse neurotransmitter 
systems. In this regard, several reports indicate that CB1 can-
nabinoid receptor diminishes the glutamatergic neurotrans-
mission [39-41], enhances the release of acetylcholine (ACh) 
[42, 43] and potentiates the activity of the serotonergic (5-
HT) system [44-47].  

The CB2 Cannabinoid Receptor 

 Cloned in 1993 by Munro et al. the CB2 cannabinoid 
receptor was localized in cells of the immune system and 
was apparently and absent in the CNS [48]. These observa-
tions were confirmed by Brown et al. describing the pres-
ence of the CB2 cannabinoid receptor in liver, lung, and tes-
ticles but complete absence in the CNS [49]. Despite that the 
pioneer studies described that the localization of the CB2 
cannabinoid receptor was restricted to immune cells, Van 
Sickle and co-workers (2005) reported the presence of this 
receptor in areas of the CNS such as brainstem [50]. Addi-
tionally, the intracellular mechanism of action of this recep-
tor is similar to that the activated by the CB1 cannabinoid 
receptor [19, 51]. 

GPR55, the CB3 Cannabinoid Receptor?  

 Recently, the orphan G protein-coupled receptor 55 
(GPR55) was identified as a putative cannabinoid receptor. 
The GPR55 is a G-protein coupled receptor, identified in 
1998 after a screen of a human genomic library [52] and it 
has been referred as the novel cannabinoid receptor 3 (CB3) 
since it potentially explains the physiological effects that are 
non-CB1/CB2 cannabinoid receptor mediated [53-55]. In this 
regard, Andradas et al. reported that GPR55 promotes cancer 
cell proliferation in cell culture [56]. Whether GPR55 re-
sponds to the endocannabinoid ligands described so far or 
the exogenous cannabinoids is an issue to be explored. 

THE ENDOCANNABINOIDS  

 The discovery of cannabinoid receptors triggered a 
search for their endogenous ligands. N-arachidonoylethano-
lamide also known as anandamide (ANA) was the first 
molecule endogenously synthetized, known to bind cannabi-
noid receptors [57] whereas 2-arachidonoylgly-cerol (2-AG) 
was identified 3 years later by the same laboratory [58]. 

 Since the discovery of ANA, several endogenous com-
pounds with cannabinoid-like properties have been described 
as well, such as the sleep-inducing lipid oleamide [59-69], 
noladin ether [70-73], O-arachidonoylethanolamine, also 
known as virodhamine [74-76] and N-arachidonyldopamine 
[77, 78]. The neurobiological role of the new members of the 
endocannabinoid family remains to be described. Further 
studies will be aimed to describe the pharmacological effects 
of these compounds on diverse experimental tasks as well as 
the description of their potential mechanisms of action.  

Biosynthesis and Degradation of the Endocannabinoids 

 Biochemically, the release of the endocannabinoids is 
different from classical neurotransmitters since they are not 
stored in synaptic vesicles. For example, ANA and 2-AG are 
synthesized from lipid precursors, and then further they are 
released from postsynaptic neurons in an activity-dependent 
way or “on demand” [79-82]. The ANA precursor is an N-
arachi-donylphosphatidylethanolamine (N-ArPE), which has 
been suggested as the origin of the transfer of arachidonic 
acid from the sn-1 position of 1,2-sn-di-arachidonyl-
phosphatidyl-choline to phosphatidylethanolamine which is 
catalyzed by a calcium-dependent N-acyltransacylase 
(NAT). Thus, N-ArPE is cleaved by an N-
acylphosphatidylethanolamine (NAPE)-specific phospholi-
pase D (PLD) which releases AEA and phosphatidic acid 
[83, 84]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Activation of the CB1 cannabinoid receptor leads to the blockade of calcium (Ca
2+

, N and Q type) and activates potassium (K
+
) 

channels. Exogenous or endogenous cannabinoids induce an inhibition of the activity of the adenililcyclcase (AC) decreasing the synthesis of 

the cAMP whereas activates a PLC as well. This might be the molecular basis of the behavioral effects induced by exogenous/endogenous 
cannabinoids. Abbreviations: AC, adenylate cyclase; CB1, CB1 cannabinoid receptor; PGi, Gi coupled protein; PLC, phospholipase C. 
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 Regarding the degradation mechanisms, it has been pos-
tulated different routes. For instance, ANA is transported to 
the interior of the cell via putative transporters. Despite the 
apparent lack of molecular evidence for a carrier-mediated 
transport of ANA across the membrane (ANA membrane 
transporter, AMT) and the debate on its existence, particu-
larly in view of the fact that the lipophilicity of ANA would 
allow it to cross the plasma membrane by passive diffusion, 
experimental evidence suggest indeed, the neurobiological 
role of the putative AMT [85, 86].  

 While the transporter of ANA is still in debate, the 
mechanism of degradation of this endocannabinoid and 2-
AG has been studied in detail. Current evidence suggest that 
fatty acid amide hydrolase (FAAH) is the principal ANA-
hydrolyzing enzyme whereas monoacylglycerol lipase 
(MAGL) is responsible for approximally 85% of the hy-
drolysis of 2-AG [81, 87-91].  

 To obtain an understanding of the neurobiological role of 
FAAH and AMT, several compounds have been developed 
to study the activity of these elements For instance, drugs 
that block the activity of the AMT, such as (5 Z,8 Z,11 Z,14 
Z)-N-(4-hydroxy-2-methylphenyl)-5,8,11,14-eicosatetraena-
mide (VDM-11) [92] or cyclohexyl carbamic acid 3 -
carbamoyl-biphenyl-3-yl estercyclohexyl carbamic acid 3 -
carbamoyl-biphenyl-3-yl ester, named URB597 (a FAAH 
inhibitor) [93] have shown to enhance the endogenous levels 
of ANA. Additionally, these compounds display pharmacol-
ogical positive properties since they provide an improvement 
in pathological conditions, such as anxiety or tumor growing 
[94-96].  

ENDOCANNABINOIDS AND SLEEP MODULATION 

 Regulation of the sleep-waking cycle is complex and 
involves multiple neurological circuits and diverse endoge-
nous molecules. The interplay among assorted neuro-
anatomical and neurochemical systems such as acetylcholine 
(ACh), dopamine (DA), 5-HT, noradrenaline, histamine, and 
hypo-cretin maintain wakefulness (W) state whereas the 
sleep-onset is governed by the interacting forces of the sleep 
drive, which steadily increases with duration of waking, and 
circadian fluctuations. Sleep-promoting neurons located in 
the anterior hypothalamus release GABA and inhibit wake-
promoting regions in the hypothalamus and brainstem and 
participate in the generation of slow wave sleep (SWS). Dur-
ing rapid eye movement (REM) sleep, brainstem regions 
typically inhibited during W and SWS become active. In this 
regard, ascending projections from cholinergic neurons in 
the brainstem activate the thalamus which in turn increases 
the firing of the neurons in the cortex [97-104].  

 The role of the endocannabinoid system on sleep modu-
lation has been suggested based in experimental evidence. 
For instance, classical experiments reported that marijuana 
and 

9
-THC modulate the sleep-wake cycle [105-109]. More 

recently, the very first approach showing the role of the CB1 
cannabinoid receptor on sleep modulation was achieved by 
Santucci and co-workers in 1996. These authors injected 
systemically the CB1 cannabinoid receptor antagonist, 
SR141716A, (0.1, 0.3, 1, 3, and 10 mg/kg, ip) to rats finding 
a dose-dependent enhancement of W as well as a diminution 
in SWS and REMS [110].  

 Later, in 1998, our group reported that intracerebroven-
tricular (icv) injections of ANA in rats during the lights-on 
period produced the opposite effect observed to that by San-
tucci and colleagues. We found a significant diminution in 
W as well as an increase in SWS and REMS. Additionally, 
the effects caused by ANA on sleep were more evident if 
injected into the pedunculopontine tegmental nucleus 
(PPTg), a sleep-related brain area [111]. 

 Next, it was demonstrated that administration of 
SR141716A before the injection of ANA either icv or into 
the PPTg blocked the sleep-inducing effects of ANA [112]. 
Furthermore, if activity of PLC, which is coupled to the CB1 
cannabinoid receptors [113, 114] was prevented using 
U73122 (a PLC inhibitor) [115, 116] the sleep-promoting 
properties of ANA were also blocked [112]. 

 Due to that ANA facilitates the activity of several neuro-
transmitter systems, it was hypothesized that this endocan-
nabinoid could induce sleep via the recruitment of a sleep-
inducing molecule such as adenosine (AD). Systemic ad-
ministrations of ANA (10mg/kg, ip) enhanced the extracellu-
lar levels of AD as well as the sleep time whereas the injec-
tion of SR141716A significantly blocked these effects. We 
conclude from these studies that ANA promotes sleep by 
enhancing the levels of the sleep-inducing molecule AD 
[117].  

Circadian Fluctuations of the Endocannabinoid System 

 The brain distribution of ANA suggests a neuromodula-
tory role of this lipid in regions such as cortex, hippocampus, 
striatum, cerebellum, and brainstem [118-121]. Since several 
behaviours display diurnal variations, including the sleep-
wake cycle it was hypothesized that ANA might be also 
showing circadian fluctuations. In this regard, it was reported 
that this endocannabinoid showed a significant enhancement 
in its contents in cerebrospinal fluid (CSF) during the lights-
on period whereas its concentration diminished across the 
lights-off period. Moreover, in sleep-related brain regions, 
ANA also showed diurnal fluctuations. For example, in 
pons, it was found a maximum values during the dark phase. 
We speculate that ANA is likely accumulated in parenchyma 
during the lights-off period (when the rodents are awake) and 
then, released into the CSF to reach out specific target re-
gions in the CNS to modulate sleep [118-121]. 

 The circadian variation of the endocannabinoid system 
includes also fluctuations of the CB1 cannabinoid receptor. It 
has been reported that the highest peak for this protein in the 
brainstem occurs at 13:00h, whereas for the mRNA the ze-
nith was described at 21:00h. Furthermore, the lowest ex-
pression for the protein was detected at 01:00 whereas the 
mRNA lowest levels were found at 09:00h [122]. These re-
sults suggest that the expression of the CB1 cannabinoid 
receptor is linked with a circadian component.  

 Additionally to the circadian variation, the CB1 cannabi-
noid receptor displays behavioural state-dependent varia-
tions. In this regard, the mRNA and protein of this receptor 
were increased in sleep-deprived rats compared to control 
animals. Taking together, the data suggest that the CB1 can-
nabinoid receptor could modulate sleep homeostasis [123]. 
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Sleep Modulation after the Blocking of FAAH or AMT 

 Although incipient, the experimental evidence suggests 
that AMT and FAAH participate in the modulation of the 
sleep-wake cycle. For example, it has been reported that icv 
administrations in rats of the FAHH inhibitor URB597 (10 
or 20 g/5 L) during the lights-on period, enhance alertness 
whereas SWS and REMS are diminished. Furthermore, c-
Fos immunoreactivity in hypothalamus and dorsal raphe 
nucleus was found increased in rats that received URB597. 
Finally, extracellular levels of DA are increased after the 
administration of the FAAH blocker. The findings indicate 
that inhibition of the FAAH, via URB597, facilitates waking 
[124]. 

 As mentioned previously, VDM-11 is commonly used as 
an inhibitor of ANA cellular uptake, and thereby to potenti-
ate its actions. When assayed alone in rats, VDM-11 (10 or 
20 g/5 L; icv) at the beginning of the lights-off period, di-
minished W and promoted SWS and REMS. This sleep-
inducing effect of VDM-11 was accompanied with a c-Fos 
expression in sleep-related brain areas such as the anterior 
hypothalamic area, paraventricular thalamic nucleus, and 
pedunculopontine tegmental nucleus [125]. Fig. (2) describes 
the potential mechanism of action of the endocannabinoid 
system on sleep. 

 Despite the lack of experimental evidence about the role 
of the endocannabinoid system in sleep disorders, some stud-
ies have suggested the potential role of this neurobiological 
system. Although levels in plasma and CSF of ANA were 
not found statistically different between patients with sleep 

apnea and control subjects [126], it suggests that the endo-
cannabinoid system may be linked with sleep diseases. Fur-
ther studies are needed to explore the role of the endocan-
nabinoid system on sleep disorders. 

POTENTIAL MECHANISM OF ACTION OF THE 
ENDOCANNABINOID SYSTEM ON SLEEP MODU-

LATION 

 Pharmacological blockade of the CB1 cannabinoid recep-
tor using SR141716A facilitate waking whereas microinjec-
tion of ANA promotes sleep. Additionally, administration of 
U73122 (a selective PLC inhibitor) blocks the ANA sleep-
inducing effects. Opposite to this, microinjection of VDM-
11 induces sleep whereas URB597 enhances waking. Taken 
together the evidence described previously, we have hy-
pothesized that the CB1 receptor localized in pons and basal 
forebrain, as demonstrated by others [23, 24], could activate 
cholinergic neurons placed in the same brain regions [127-
129]. Experimental evidence indicates that activation of the 
CB1 cannabinoid receptor promotes the release of ACh [42]. 
It is worthy to note that ACh levels are higher in brainstem 
as well as basal forebrain during sleep [130-133]. Thus, it 
can be inferred that if CB1 cannabinoid receptors are ex-
pressed in cholinergic neurons (in PPTg as well as basal 
forebrain), and they are activated by ANA, then a release of 
ACh could be taking place to promote sleep. The involve-
ment of different sleep-related neuroanatomical and neuro-
chemical factors in the sleep-inducing properties of ANA 
remains to be described.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Schematic representation of the hypothetical mechanism of action of the endocannabinoid system modulating sleep. Pharmacologi-

cal blockade of the CB1 cannabinoid receptor using SR141716A increases alertness whereas microinjection of the ligands either anandamide 

or cannabinoids enhances sleep. U73122, a selective PLC inhibitor, blocks the anandamide´s sleep-inducing effects. Similar results have 

been observed using VDM-11, an AMT blocker whereas inhibition of the activity of FAAH via URB-597 diminishes sleep. Abbreviations: 

AMT, anandamide membrane transporter; CB1, CB1 cannabinoid receptor; FAAH, fatty acid amide hydrolase; PGi, Gi coupled protein; PLC, 
phospholipase C. 
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DISCUSSION 

 The discovery of the endocannabinoid system, composed 
of endogenous lipids, receptors and metabolic enzymes, has 
brought information on its significance in multiple neurobi-
ological processes, including sleep modulation. The sleep–
wake cycle is maintained by different neurotransmitter sys-
tems [98, 101, 103, 134, 135], including the endocannabi-
noid system [110-112, 117, 124, 125].  

 From the pharmacological and pharmaceutical perspec-
tive, the endocannabinoid system might be considered in the 
near future to treat diverse pathologies, including sleep dis-
orders. Novelty strategies for developing drugs considering 
the elements of the endocannabinoid system could be useful 
as an effective approach to the prevention and management 
of sleep disturbances such as insomnia or excessive diurnal 
somnolence. For example, the CB1 cannabinoid antagonists, 
such as SR141716A, could be considered to treat narcolepsy, 
whereas the ANA or VDM-11 could be included in the man-
aging of insomnia. The next step would be to describe and 
integrate the mechanism of action of the endocannabinoid 
system in sleep modulation and its relevance in sleep disor-
ders. 
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