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Abstract: Cannabidiol (CBD), a non-psychoactive cannabinoid, has been reported to mediate

antioxidant, anti-inflammatory, and anti-angiogenic effects in endothelial cells. This study investigated

the influence of CBD on the expression of heme oxygenase-1 (HO-1) and its functional role in regulating

metabolic, autophagic, and apoptotic processes of human umbilical vein endothelial cells (HUVEC).

Concentrations up to 10 µM CBD showed a concentration-dependent increase of HO-1 mRNA

and protein and an increase of the HO-1-regulating transcription factor nuclear factor erythroid

2-related factor 2 (Nrf2). CBD-induced HO-1 expression was not decreased by antagonists of

cannabinoid-activated receptors (CB1, CB2, transient receptor potential vanilloid 1), but by the

reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC). The incubation of HUVEC

with 6 µM CBD resulted in increased metabolic activity, while 10 µM CBD caused decreased

metabolic activity and an induction of apoptosis, as demonstrated by enhanced caspase-3 cleavage.

In addition, CBD triggered a concentration-dependent increase of the autophagy marker LC3A/B-II.

Both CBD-induced LC3A/B-II levels and caspase-3 cleavage were reduced by NAC. The inhibition

of autophagy by bafilomycin A1 led to apoptosis induction by 6 µM CBD and a further increase

of the proapoptotic effect of 10 µM CBD. On the other hand, the inhibition of HO-1 activity with

tin protoporphyrin IX (SnPPIX) or knockdown of HO-1 expression by Nrf2 siRNA was associated

with a decrease in CBD-mediated autophagy and apoptosis. In summary, our data show for the first

time ROS-mediated HO-1 expression in endothelial cells as a mechanism by which CBD mediates

protective autophagy, which at higher CBD concentrations, however, can no longer prevent cell death

inducing apoptosis.
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1. Introduction

Atherogenesis is the main cause of pathological cardiovascular events such as heart disease and

stroke [1]. Within this multifactorial process, endothelial dysfunction, neovascularization, vascular

proliferation, apoptosis, matrix degradation, inflammation, and thrombosis have been identified as

mechanisms involved in the formation of atherosclerotic plaques [2]. The pathogenesis of atherosclerosis

seems to be causally linked to an imbalance between the production of reactive oxygen species (ROS)

and the available antioxidant defense systems [3,4]. The resulting oxidative stress leads to cell damage

by the direct oxidation of cellular proteins, lipids, and DNA or via cell death signaling pathways

responsible for accelerating atherogenesis [4]. One of several promising targets against the progression

of inflammatory vascular diseases including atherosclerosis represents the inhibition of endothelial

cell apoptosis [5–7].

An important antioxidant, anti-inflammatory, and cytoprotective enzyme is heme oxygenase-1

(HO-1), which catalyzes the degradation of heme to form biliverdin, iron ions, and carbon monoxide
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(CO) and is induced by oxidative stress [8]. Among other properties, HO-1 inhibits the formation of

ROS and tumor necrosis factor-mediated apoptosis of endothelial cells [9,10] and exerts a protective

effect on endothelial cells exposed to hyperglycemic and oxidative/nitrosative stress conditions [11,12].

In addition, several studies have pointed to a critical role of HO-1 in the regulation of autophagy,

which has been associated with survival-enhancing effects in various cell types, including endothelial

cells [13–16]. Finally, HO-1 showed in vivo positive effects in animal models of atherosclerosis and

restenosis [17]. On the other hand, HO-1 gene polymorphisms, more precisely a larger number of

guanosine thymidine dinucleotide repeats in the HO-1 gene promoter, have been associated with a

higher risk of chronic renal disease, cardiovascular events, and mortality in patients with coronary

heart disease [18]. However, some reports also suggest that excessive and prolonged HO-1 expression

leads to negative effects on cell function and survival [19,20]. In this context, the cytotoxic component is

attributed to the release of molecular iron or high concentrations of CO, an inhibitor of the respiratory

chain [21–24].

For the treatment of diseases associated with atherosclerosis, interest in the non-psychotropic

cannabis-based active substance cannabidiol (CBD) has increased significantly in recent years. Indeed,

CBD has been shown to suppress a high glucose-induced inflammatory response and barrier disruption

of endothelial cells [25] and to attenuate myocardial dysfunction, cardiac fibrosis, oxidative/nitrative

stress, inflammation, cell death, and interrelated signaling pathways in a mouse model of type I diabetic

cardiomyopathy [26]. Although the hypothesis of an initiation of antioxidative signaling pathways has

been repeatedly raised for CBD [25–27], the influence of the phytocannabinoid on endothelial survival

has hardly been investigated.

In the search for a possible target for CBD in the prevention of endothelial cell death, we have

focused on the enzyme HO-1. Accordingly, the present study investigated the effect of CBD on the

expression of HO-1 in human umbilical vein endothelial cells (HUVEC) and the associated changes in

autophagy and apoptosis. For the first time, we provide evidence for the ROS-dependent induction of

HO-1 expression in endothelial cells as a mechanism by which CBD mediates protective autophagy.

However, at higher CBD concentrations (>6 µM) and thereby resulting in very high HO-1 levels, this

protective effect is no longer able to prevent the induction of cell death inducing apoptosis.

2. Materials and Methods

2.1. Materials

CBD was supplied by Biotrend (Cologne, Germany). AM-251 and AM-630 were bought from

Biomol GmbH (Hamburg, Germany). Capsazepine and N-acetyl-L-cysteine were from Sigma-

Aldrich (Taufkirchen, Germany). Bafilomycin A1 was obtained from InvivoGen (Toulouse, France).

HUVEC, endothelial cell growth medium (ECGM), and supplements were obtained from PromoCell

GmbH (Heidelberg, Germany). Nrf2 siRNA (sc-37030), Nrf2 (C-20) antibody (sc-722), and copper

protoporphyrin IX (CuPPIX) were purchased from Santa Cruz Biotechnology, Inc. (Heidelberg,

Germany). HO-1 antibody (ADI-SPA-895) and tin protoporphyrin IX (SnPPIX) were obtained from

Enzo Life Sciences GmbH (Lörrach, Germany). Cleaved caspase-3 (Asp175) (5A1E) antibody (#9664),

LC3A/B antibody (#4108), and secondary antibodies (anti-rabbit antibody, #7074; anti-mouse antibody,

#7076) were purchased from Cell Signaling Technology Europe (Frankfurt/Main, Germany). β-Actin

antibody (clone AC-74, #A5316) was obtained from Sigma-Aldrich (Taufkirchen, Germany). Negative

control siRNA (cat. no. 1022076) was from Qiagen (Hilden, Germany). Transfection reagent

LipofectamineTM RNAiMAX and transfection medium Opti-MEM® I Reduced Serum Medium were

obtained from Thermo Fisher Scientific Inc. (Schwerte, Germany).

2.2. Cell Culture

HUVEC were maintained in endothelial cell growth medium (ECGM) supplemented with

0.4% endothelial cell growth supplement (ECGS), 2% fetal calf serum (FCS), 0.1 ng/mL epidermal
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growth factor (EGF), 1 ng/mL basic fibroblast growth factor (bFGF), 90 µg/mL heparin, and 1 µg/mL

hydrocortisone (all from Promocell). The cells were grown in a humidified incubator at 37 ◦C and 5%

CO2. Experiments were performed using HUVEC at passages 2 to 6. All incubations were performed

in complete medium. NAC was diluted in phosphate-buffered saline. All other test substances were

dissolved in ethanol, DMSO, or NaOH, with the corresponding solvents showing final concentrations

in the incubates of maximal 0.033% (v/v) ethanol (for 10 µM CBD), 0.025% (v/v) DMSO (for CuPPIX),

0.01% (v/v) DMSO (for AM-251, AM-630, capsazepine), 0.05% (v/v) DMSO (for 50 nM bafilomycin A1),

or 0.001 M NaOH (for SnPPIX). The respective vehicle control incubate contained the corresponding

concentration of ethanol, DMSO, or NaOH of the test substance incubates.

2.3. Cell Viability Analysis

The viability of the cells was determined using the colorimetric WST-1 test (Roche Diagnostics,

Mannheim, Germany), in which the water-soluble tetrazolium salt WST-1 is bioreduced by NAD(P)H

to a formazan dye. Accordingly, the amount of formazan dye formed correlates directly with the

metabolic activity of the cells. Cells were seeded into 24-well plates at 1 × 105 cells per well, with the

exception of the experiment on the concentration-dependent influence of CBD (0.1 to 10 µM) on

viability after 48 h, for which cells were seeded into 96-well plates with 5 × 103 cells per well. After 24 h,

medium was changed, and cells were treated with the respective test substances for the indicated

times. After the respective incubation time, cell viability was measured. In co-incubation experiments

using SnPPIX, the medium was refreshed prior to the addition of WST-1 reagent to avoid influences in

absorbance measurement due to the coloring of SnPPIX.

2.4. Quantitative RT-PCR Analysis

HUVEC seeded into 24-well plates with a density of 1× 105 cells per well were grown to confluence.

The cells were incubated with the respective test substances or their vehicles for the specified times.

Then, cell culture media were removed, and the cells were lysed for RNA isolation. The total RNA was

isolated with the RNeasy total RNA Kit (Qiagen, Hilden, Germany). According to the manufacturer’s

instructions, β-actin (internal standard) and HO-1 mRNA levels were determined with the TaqMan®

RNA-to-CT™ 1-Step Kit (Applied Biosystems, Darmstadt, Germany) by means of quantitative real-time

RT-PCR. HO-1 mRNA levels were normalized to β-actin, and samples were compared to appropriate

vehicle controls. Primers and probes for human β-actin and HO-1 were TaqMan® Gene Expression

Assay products (Applied Biosystems, Darmstadt, Germany).

2.5. Western Blot Analysis

For the analysis of HO-1, Nrf2, caspase-3, LC3A/B-I/II, and β-actin at the protein level, HUVEC

were seeded in 24-well or 6-well plates with a density of 1 × 105 or 4 × 105 cells per well. After 24 h,

the medium was changed. After incubation with the test substances or their vehicles for the specified

times, cell culture media (non-adherent cells) and trypsinated (adherent) cells were collected per well

of a 6-well plate or of 4 pooled wells with the same treatment of a 24-well plate and centrifuged at

500× g. Each cell pellet was lysed in 50 µL sample buffer, boiled at 95 ◦C for 5 min, homogenized by

sonication, and centrifuged at 10,000× g for 5 min. Supernatants were used for Western blot analysis.

Total protein in supernatants was measured using a Pierce™ bicinchoninic acid (BCA) protein assay

kit (Thermo Fisher Scientific Inc., Schwerte, Germany) according to the manufacturer’s protocol.

Then, equal amounts of denatured proteins were separated on a 12% sodium dodecyl

sulfate–polyacrylamide gel. After transfer to nitrocellulose and blocking of the membranes with 5%

milk powder, the blots were probed with specific primary antibodies. To detect the corresponding

proteins, the membranes were probed with horseradish peroxidase-conjugated rabbit or mouse

secondary antibodies. Visualization of antibody binding was performed using a chemiluminiferous

solution (100 mM Tris-HCl pH 8.5, 1.25 mM luminol, 200 µM p-coumaric acid, 0.09% (v/v) hydrogen

peroxide, 0.0072% (v/v) DMSO). Densitometric analysis of band intensities was conducted by optical
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scanning and quantification with Quantity One 1-D Analysis Software (Biorad, Munich, Germany).

After the analysis was completed, membranes were stripped and reprobed. Protein expression was

normalized to β-actin and compared to the corresponding vehicle controls.

2.6. siRNA Transfection

Reverse transfection of siRNA targeting Nrf2 mRNA was performed according to the manufacturer’s

instructions (Thermo Fisher Scientific Inc., Schwerte, Germany). In brief, 3.5 × 104 cells in 0.5 mL

basal endothelial growth medium per well were added to 0.1 mL per well of transfection medium

Opti-MEM® I Reduced Serum Medium containing a mixture of siRNA (final concentration in incubates:

20 nM) and siRNA transfection reagent LipofectamineTM RNAiMAX (1 µL), and mixed and incubated

for 24 h in a 24-well plate. Thereafter, the medium was changed, and cells were incubated with vehicle

or CBD for another 24 h. Cells were transfected with non-silencing control siRNA (20 nM) in parallel

to demonstrate specific gene silencing. Subsequently, the cell viability tests and Western blot analyses

were performed as described above.

2.7. Statistics

Comparisons between groups were performed with Student´s two-tailed t test or with one-way

ANOVA with Bonferroni´s (selected comparisons) or Dunnett´s post hoc test using GraphPad Prism 5.00

(GraphPad Software, San Diego, CA, USA). In the case of Bonferroni’s post hoc test, the determination

of statistical significance was limited to the groups of interest for reasons of clarity of presentation.

Results were considered to be statistically significant at values of p < 0.05 and were designated in the

figures accordingly.

3. Results

3.1. CBD Causes a Concentration- and Time-Dependent Induction of HO-1 Expression in HUVEC

To determine whether CBD increases HO-1 expression in HUVEC, cells were treated with the

substance for 6 to 48 h. As shown in Figure 1A,B, incubation of cells with CBD at concentrations up to

10 µM was associated with a concentration-dependent increase in HO-1 mRNA and a constantly high

mRNA increase in the range of 6 to 48 h. A concentration-dependent increase was also registered for

the HO-1 protein (Figure 1C), with CBD causing a corresponding maximum after 24 h (Figure 1D).

3.2. Reactive Oxygen Species but not Cannabinoid-Activated Receptors Mediate CBD-Induced HO-1
Expression in HUVEC

After demonstrating a concentration-dependent increase in HO-1 expression by CBD (Figure 1),

a possible role of CB receptors and the transient receptor potential vanilloid 1 (TRPV1) in HO-1

induction by 6 µM CBD was next investigated. For this purpose, cells were pre-incubated with the CB1

receptor antagonist AM-251, the CB2 receptor antagonist AM-630, or the TRPV1 antagonist capsazepine.

All antagonists were used at a concentration of 1 µM, which is in the range of concentrations that

inhibit CB1-, CB2-, and TRPV1-dependent events [28–31] and had no significant influence on HO-1

expression in our experiments (Figure 2A). However, none of the three substances led to an inhibition of

CBD-induced HO-1 induction (Figure 2B), suggesting receptor-independent events as the underlying

mechanism. In accordance with these data, the receptor antagonists were also unable to prevent HO-1

induction by 10 µM CBD (data not shown).
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Figure 1. Cannabidiol (CBD) causes a concentration- and time-dependent induction of heme oxygenase-

1 (HO-1) expression in human umbilical vein endothelial cells (HUVEC). Concentration-dependent

effect of CBD on HO-1 mRNA (A) and HO-1 protein (C) expression following incubation with CBD or

vehicle for 24 h. Time-dependent effect of CBD on HO-1 mRNA (B) and HO-1 protein (D) expression

following incubation with CBD or vehicle for the times indicated. Expression values were normalized

to β-actin. Percent control represents comparison with vehicle-treated cells (100%) in the absence of

test substance. Values are means ± SEM of n = 4 (A), n = 3 (B), n = 6 (C), or n = 5 (D) experiments.

The values for blots were determined by densitometric analysis. Representative blots are shown.

* p < 0.05 vs. corresponding time-matched vehicle control; one-way ANOVA with Dunnett´s post hoc

test (A,C) or Student´s two-tailed t test (B,D).

It is known that the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) is involved in

the increased expression of HO-1 [32,33]. To prove the influence of CBD on the transcription factor

Nrf2, its protein content was analyzed after 24 h treatment with concentrations up to 10 µM CBD. Here,

CBD induced an upregulation of the Nrf2 protein when using concentrations up to 6 µM, while the Nrf2

levels induced by 10 µM CBD decreased compared to the Nrf2 expression levels induced by 6 µM CBD

(Figure 2C). A participation of ROS in CBD-induced HO-1 expression was analyzed with the antioxidant

and ROS scavenger N-acetyl-L-cysteine (NAC). The cells were pre-incubated with NAC for 30 min

and then further co-incubated with the indicated CBD concentration (Figure 2D). NAC significantly

reduced the HO-1 induction of 10 µM CBD and led to an approximate 60% reduction in HO-1 protein

levels induced by 6 µM CBD, indicating a participation of ROS in HO-1 induction (Figure 2D).
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Figure 2. Reactive oxygen species (ROS) but not cannabinoid-activated receptors mediate CBD-

induced HO-1 expression in HUVEC. Effect of AM-251 (CB1 antagonist), AM-630 (CB2 antagonist),

and capsazepine (Capsa; transient receptor potential vanilloid 1 (TRPV1) antagonist) on HO-1 protein

expression alone (A) or in combination with CBD (B). Cells were pre-incubated with the respective

receptor antagonist (all tested at a final concentration of 1 µM) for 30 min and then further co-incubated

with CBD (6 µM) for another 24 h. (C) Concentration-dependent effect of CBD on Nrf2 expression in

HUVEC following incubation with CBD or vehicle for 24 h. (D) Effect of the antioxidant and ROS

scavenger N-acetyl-L-cysteine (NAC) on CBD-induced HO-1 expression. Cells were pre-incubated

with 100 µM NAC for 30 min and then further co-incubated with CBD for another 24 h. Expression

values were normalized to β-actin. Percent control represents comparison with vehicle-treated cells

(100%) in the absence of test substance. Values are means ± SEM obtained from densitometric analysis

of n = 7 (A), n = 12 (B), n = 4 (C), and n = 3 (D) experiments. The values for blots were determined by

densitometric analysis. Representative blots are shown. * p < 0.05 vs. corresponding vehicle control,

# p< 0.05 vs. corresponding CBD-treated group; one-way ANOVA with Bonferroni´s (B,D) or Dunnett´s

(C) post hoc test.

3.3. CBD Induces a Concentration-Dependent Increase in Cellular Autophagy, but Regulates Metabolic
Activity and Apoptosis Differently Depending on the Concentration

The functional significance of the induction of HO-1 by CBD was consequently investigated.

To demonstrate the influence of CBD on the metabolic activity (viability) of HUVEC, the cells were

incubated with the substance in concentrations of 0.1 to 10 µM for 48 h and then subjected to a WST-1

assay. As shown in Figure 3A, the metabolic activity of HUVEC was increased after 48 h incubation

with CBD at concentrations of 1 to 6 µM, whereby the effect of 6 µM CBD was significant. In contrast,

48-h treatment of HUVEC with 10 µM CBD resulted in a significant decrease in metabolic activity

compared to the corresponding vehicle control (Figure 3A).
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Figure 3. CBD induces a concentration-dependent increase in cellular autophagy, but it regulates

metabolic activity and apoptosis differently depending on the concentration. (A) Concentration-

dependent effect of CBD on viability of HUVEC. Concentration- (B) and time-dependent (C) effect

of CBD on light chain 3 A (LC3A)/B-I/II expression. (D) Concentration-dependent effect of CBD on

caspase-3 cleavage. Cells were incubated with CBD for 48 h (A), 24 h (B,D) or for the times indicated

(C). Percent control represents comparison with vehicle-treated cells (100%) in the absence of test

substance, in (A) with non-treated cells at 0 h (100%). Expression values were normalized to β-actin.

Values are means ± SEM of n = 20–21 (A), n = 6 (B), n = 3 (C), or n = 10 (D) experiments. The values

for blots were determined by densitometric analysis. Representative blots are shown. * p < 0.05 vs.

corresponding vehicle control, in (A) vs. vehicle (Veh) at 48 h; one-way ANOVA with Dunnett´s post

hoc test (A,B,D) or Student´s two-tailed t test (C).

In order to investigate autophagy as a potential CBD-induced protective mechanism, HUVEC were

incubated with CBD in the same concentration range (0.1–10 µM) that was used for HO-1 expression

analysis. For the initiation of autophagy, the conjugation of the microtubule-associated protein 1 light

chain 3-I (LC3-I) with phosphatidylethanolamine (PE) is required. The LC3-II generated in this way is

responsible for the maturation of the autophagosomes [34,35]. Accordingly, LC3-I and LC3-II levels

were determined by Western blot. As shown in Figure 3B, CBD led to a concentration-dependent

induction of autophagy, which resulted in a significant increase in LC3A/B-I and LC3A/B-II protein

expression. The decisive LC3A/B-II protein expression by 6 µM CBD was time-dependent and showed

maximum stimulation values after an incubation period of 24 h (Figure 3C). The activation of autophagy

was evaluated by assessing the expression of the PE-conjugated LC3A/B-II protein normalized to

β-actin instead of the protein ratio between LC3-I and LC3-II, since different affinities of antibodies

against LC3-I and LC3-II and different expression levels of these proteins depending on the cell line

and tissue have been reported in the literature [35,36]. Although the incubation of HUVEC with 10 µM

CBD induced excessive LC3A/B-II protein expression (Figure 3B), a significant increase in caspase-3

apoptosis marker (Figure 3D) was detected at the same time, which correlated with a decrease in

metabolic activity (Figure 3A).
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3.4. ROS Mediate the CBD (10 µM) Induced Reduction of Metabolic Activity as well as the Increase of
Autophagy and Induction of Apoptosis in HUVEC

Since CBD-induced HO-1 expression is ROS-dependent as described above, the influence of ROS

on LC3A/B-I/II and cleaved caspase-3 as well as on metabolic activity was next investigated with the

ROS scavenger NAC. For this purpose, the cells were pre-incubated with NAC for 30 min and then

further co-incubated with CBD. As a result of these studies, NAC was shown to significantly reduce

the 10 µM CBD-induced decrease in metabolic activity (Figure 4A) as well as LC3A/B-I/II (Figure 4B,C)

and caspase-3 expression (Figure 4B,D). Consequently, 10 µM CBD induces ROS-dependent autophagy

and apoptosis induction, leading to a loss of HUVEC viability at this concentration. With regard to the

non-proapoptotic 6 µM concentration of CBD (Figure 4D), NAC caused an approximate 60% inhibition

of LC3A/B-II expression (Figure 3C); however, this was not significant and showed no inhibitory effect

on CBD-induced metabolic activity (Figure 4A).
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Figure 4. ROS mediate the CBD (10 µM)-induced reduction of metabolic activity as well as the increase

of autophagy and induction of apoptosis in HUVEC. Effect of N-acetyl-L-cysteine (NAC) on CBD

effects on viability (A), LC3A/B-I/II expression (B,C), and caspase-3 cleavage (B,D) in HUVEC. Cells

were pre-incubated with 100 µM NAC for 30 min and then further co-incubated with CBD for another

24 h. Expression values were normalized to β-actin. Percent control represents comparison with

vehicle-treated cells (100%) in the absence of test substance. Values are means ± SEM of n = 4 (A) or n

= 3 (C,D). The values for blots were determined by densitometric analysis. Representative blots are

shown in (B). * p < 0.05 vs. corresponding vehicle control, # p < 0.05 vs. corresponding CBD-treated

group; one-way ANOVA with Bonferroni´s post hoc test.

3.5. Inhibition of CBD-Induced Autophagy Leads to Increased Apoptosis and Loss of Viability of HUVEC

To investigate the role of autophagy in preventing apoptosis of HUVEC under basal and

CBD-modulated conditions, further experiments with the autophagy inhibitor bafilomycin A1 were

performed. Bafilomycin A1 led to a profound caspase-3 cleavage in the presence of 6 µM and 10 µM

CBD (Figure 5C,D, lower blots), indicating a protective effect of autophagy on the proapoptotic potential

of CBD.



Cells 2020, 9, 1703 9 of 21

 

0

50

100

150

* #

M
et

ab
ol

ic
 A

ct
iv

ity
(%

 C
on

tr
ol

)

*

0

200

400

600

800

H
O

-1
 p

ro
te

in
 (%

 C
on

tr
ol

)

0

2000

4000

6000

8000

 H
O

-1
 p

ro
te

in
 (%

 C
on

tr
ol

)

0

50

100

150 *

*#
M

et
ab

ol
ic

 A
ct

iv
ity

(%
 C

on
tro

l)

A

-
CBD (6 µM) -

-
+

+
+

+
-

Baf A1 (50 nM) -Baf A1 (2.5 nM)
CBD (10 µM) -

-
+

+
+

+
-

0
100
200
300
400
500

1000
2000
3000
4000
5000
6000
7000

 L
C

3A
/B

 p
ro

te
in

(%
 C

on
tr

ol
)

LC3A/B-I
LC3A/B-II

0
500

1000
1500
2000
2500
6000
8000

10000
12000
14000

C
as

pa
se

-3
 (1

7 
kD

a)
pr

ot
ei

n 
(%

 C
on

tr
ol

)

HO-1

LC3A/B-II
LC3A/B-I

Caspase-3
(17 kDa)

B

DC

0
50

100
150
200
250

400
600
800

1000
LC3A/B-I
LC3A/B-II

 L
C

3A
/B

 p
ro

te
in

(%
 C

on
tr

ol
) *

#
*

HO-1

LC3A/B-II
LC3A/B-I

Caspase-3
(17 kDa)

0

500

1000

1500

2000
#

*

C
as

pa
se

-3
 (1

7 
kD

a)
pr

ot
ei

n 
(%

 C
on

tr
ol

)

β-Actin β-Actin
Baf A1 (50 nM)

CBD (6 µM)
-
-

-
+

+
+

+
-

Baf A1 (2.5 nM)
CBD (10 µM)

-
-

-
+

+
+

+
-

β

Figure 5. Inhibition of CBD-induced autophagy leads to increased apoptosis and loss of viability of

HUVEC. Influence of bafilomycin A1, an inhibitor of autophagic flux, on CBD effects on viability

(A,B), HO-1 expression (C,D, upper blots), LC3A/B-I/II expression (C,D, middle blots), and caspase-3

cleavage (C,D, lower blots) in HUVEC. The cells were pre-incubated with 50 nM (A,C) or 2.5 nM (B,D)

bafilomycin A1 (Baf A1) for 30 min and then further co-incubated with 6 µM (A,C) or 10 µM CBD (B,D)

for another 24 h. Expression values were normalized to β-actin. The vertical black lines inside the

boxes of some blots (C) indicate that the lanes in between have been removed, so here too, signals from

protein samples loaded onto the same gel were compared. The actin blots shown in C and D were

used as controls for the 3 blots shown above, since the proteins analyzed in these Western blottings

were resolved on the same gel. Percent control represents comparison with vehicle-treated cells (100%).

Values are means ± SEM of n = 4 (A,B), n = 6 (C, upper blots), n = 7 (C, middle and lower blots) or

n = 3 (D) experiments. The values for blots were determined by densitometric analysis. Representative

blots are shown. * p < 0.05 vs. corresponding vehicle control, # p < 0.05 vs. corresponding CBD-treated

group; one-way ANOVA with Bonferroni´s post hoc test.
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In the case of the experiments with 10 µM of CBD, bafilomycin A1 in a relatively low concentration

of 2.5 nM was used to prevent secondary necrosis as a consequence of a very strong induction of

apoptosis by 10 µM CBD in the presence of the autophagy inhibitor.

In parallel experiments, it was shown that bafilomycin A1 led to a significant inhibition of cell

viability both under basal conditions and when administered concomitantly with CBD, showing an

important role of autophagy in maintaining homeostasis in HUVEC (Figure 5A,B). The inhibition

of autophagous flow by bafilomycin A1 had no significant effect on HO-1 expression (Figure 5C,D,

upper blots). According to bafilomycin A1-induced inhibition of the fusion of autophagosomes with

lysosomes, which normally stimulates the degradation of LC3-II, the inhibitor led to an increase in the

LC3A/B-II protein when administered alone or in combination with CBD (Figure 5C,D, middle blots).

3.6. Inhibition of HO-1 Activity by SnPPIX Reduces CBD-Induced Autophagy and Attenuates the Loss of
Viability Due to 10 µM CBD

To clarify a possible correlation between HO-1 induction by CBD and the associated autophagic

effect, it was experimentally tested whether the HO inhibitor SnPPIX can reverse the proautophagic

effect of CBD. As shown in Figure 6C,D (middle blots), SnPPIX significantly inhibited the LC3A/B-II

protein expression increased by both 6 µM and 10 µM CBD. Furthermore, SnPPIX treatment also

reduced caspase-3 activation (Figure 6C,D, lower blots). SnPPIX further led to a significant inhibition

of the viability-reducing effect of 10 µM CBD (Figure 6B) and reduced the viability-increasing effect of

6 µM CBD by approximately 43% (Figure 6A). The above effects of the HO-1 inhibitor SnPPIX were

observed despite increased HO-1 protein expression by SnPPIX alone or when incubated together with

CBD (Figure 6C,D, upper blots).

To confirm the specific inhibition of HO-1 activity by SnPPIX, parallel experiments were performed

with CuPPIX, a non-HO-1-inhibiting structural analogue of SnPPIX. CuPPIX alone also induced the

HO-1 protein, and even co-treatment with CBD led to a further upregulation of the HO-1 protein

(Table 1). However, in contrast to SnPPIX, CuPPIX led to an induction of LC3A/B-I and LC3A/B-II

protein expression and caspase-3 cleavage when incubated alone, or to an additive induction of

LC3A/B-I and LC3A/B-II protein expression and caspase-3 cleavage when incubated with CBD (Table 1).

These results confirm the specific inhibition of HO-1 activity by SnPPIX.

Table 1. Impact of CuPPIX, a non-HO-1-inhibiting structural analogue of SnPPIX, on CBD-induced

changes of viability, HO-1 expression, autophagy, and apoptosis of HUVEC. The cells were pre-incubated

with 25 µM CuPPIX for 30 min and then further co-incubated with 6 or 10 µM CBD for another

24 h. Expression values were normalized to β-actin. Percent control represents comparison with

vehicle-treated cells (100%) in the absence of test substance. Values are means ± SEM of n = 3–4

(expression data) or n = 8 experiments (metabolic activity). Expression values were obtained from

densitometric analysis of blots. * p < 0.05 vs. corresponding vehicle control, # p < 0.05 vs. CBD-treated

group; one-way ANOVA with Bonferroni´s post hoc test.

Treatment Group
Metabolic

Activity (%)
HO-1

Expression (%)
LC3A/B-I

Expression (%)
LC3A/B-II

Expression (%)
Caspase-3 (17 kDa)

Expression (%)

Vehicle 100.0 ± 6.7 100.0 ± 8.3 100.0 ± 20.7 100.0 ± 19.2 100.0 ± 39.2
6 µM CBD 120.6 ± 7.3 282.3 ± 28.8* 143.1 ± 9.9 191.7 ± 11.9 83.5 ± 13.7
CuPPIX + CBD 132.0 ± 7.5 334.2 ± 37.2 316.0 ± 45.1# 386.8 ± 53.1# 238.8 ± 46.0
CuPPIX 111.9 ± 5.8 168.9 ± 17.0 190.4 ± 24.8 198.1 ± 31.3 160.0 ± 50.5

Vehicle 100.0 ± 4.5 100.0 ± 17.4 100.0 ± 9.0 100.0 ± 9.4 100.0 ± 5.1
10 µM CBD 51.6 ± 5.3* 3683.2 ± 978.0 106.5 ± 21.3 424.7 ± 85.7* 256.9 ± 17.5*
CuPPIX + CBD 69.3 ± 5.1 5755.6 ± 1525.5 157.6 ± 8.3 615.3 ± 88.0# 333.4 ± 54.7
CuPPIX 108.7 ± 5.9 300.0 ± 69.5 188.6 ± 38.7 204.7 ± 14.3 142.1 ± 2.6
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Figure 6. Inhibition of HO-1 activity by tin protoporphyrin IX (SnPPIX) reduces CBD-induced

autophagy and attenuates the loss of viability due to 10 µM CBD. Effect of the HO-1 inhibitor SnPPIX

on CBD effects on viability (A,B), HO-1 expression (C,D, upper blots), LC3A/B-I/II expression (C,D,

middle blots) and caspase-3 cleavage (C,D, lower blots) in HUVEC. The cells were pre-incubated

with 25 µM SnPPIX for 30 min and then further co-incubated with 6 µM (A,C) or 10 µM CBD (B,D)

for another 24 h. Expression values were normalized to β-actin. The same actin blot was used as a

control for LC3A/B and caspase-3 in (C) and (D), since these proteins were resolved on the same gel.

Percent control represents comparison with vehicle-treated cells (100%) in the absence of test substance.

Values are means ± SEM of n = 6 (A), n = 4 (B,C, upper and middle blots, D, middle and lower blots),

n = 9–10 (C, lower blots), or n = 3 (D, upper blots) experiments. The values for blots were determined

by densitometric analysis. Representative blots are shown. * p < 0.05, vs. corresponding vehicle control,

# p < 0.05 vs. CBD-treated group; one-way ANOVA with Bonferroni´s post hoc test.
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3.7. Inhibition of HO-1 Expression by Nrf2 siRNA Reduces CBD-Induced Autophagy and Attenuates the Loss
of Viability by 10 µM CBD

To further confirm the functional role of HO-1 in CBD-mediated autophagy, HO-1 should be

downregulated with selective Nrf2 siRNA in subsequent experiments. Relative to cells transfected

with control siRNA, Nrf2 siRNA inhibited the upregulation of Nrf2 and significantly reduced HO-1

expression induced by 6 µM and 10 µM CBD (Figure 7C,D, upper blots).
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Figure 7. Inhibition of HO-1 expression by nuclear factor erythroid 2-related factor 2 (Nrf2) siRNA

reduces CBD-induced autophagy and attenuates the loss of viability by 10 µM CBD. Effect of Nrf2

siRNA compared to non-silencing (non-si) control siRNA on CBD effects on viability (A,B), Nrf2 and

HO-1 expression (C,D, upper blots), LC3A/B-I/II expression (C,D, middle blots), and caspase-3 cleavage

(C,D, lower blots) in HUVEC. The cells were transfected with selective Nrf2 siRNA or non-silencing

siRNA. Subsequently, vehicle, 6 µM CBD (A,C), or 10 µM CBD (B,D) was added, and the incubation

was continued for another 24 h. Expression values were normalized to β-actin. The vertical black

lines inside the boxes of the blots indicate that the blots were rearranged at these points, so here too,

signals from protein samples loaded onto the same gel were compared. The actin blots shown in

(C) and (D) were used as controls for the 4 blots shown above, since the proteins analyzed in these

Western blottings were resolved on the same gel. Values are means ± SEM of n = 4 (A,B), n = 3 (C,

upper blots, Nrf2), n = 5 (C, upper blots, HO-1), n = 4 (C, middle and lower blots, D, upper blots,

Nrf2) or n = 7 (D, upper blots, HO-1, middle and lower blots) experiments. The values for blots were

determined by densitometric analysis. Representative blots are shown. * p < 0.05 vs. corresponding

vehicle control, # p < 0.05 non-si siRNA group vs. corresponding Nrf2 siRNA group; one-way ANOVA

with Bonferroni´s post hoc test.
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At the functional level, the significantly decreased HO-1 expression caused by Nrf2 siRNA was

associated with a reduction of the proautophagic effects of 6 µM and 10 µM CBD and the proapoptotic

action of 10 µM CBD compared to CBD-treated cells transfected with non-silencing siRNA (Figure 7C,D,

middle and lower blots). In accordance with the data obtained with SnPPIX, Nrf2 siRNA led to a

significant inhibition of the 10 µM CBD mediated decrease in the vitality of HUVEC transfected with

non-silencing siRNA (Figure 7B), but it caused only about 17% inhibition of the 6 µM CBD induced

increase in metabolic activity (Figure 7A).

4. Discussion

The present study demonstrates the Nrf2- and ROS-dependent induction of HO-1 expression

in endothelial cells as a mechanism by which the non-psychoactive cannabinoid CBD mediates

concentration-dependent autophagy and, at higher concentrations, apoptosis independent of the

activation of cannabinoid receptors and TRPV1 (Figure 8).

 

Autophagy

SnPPIX

N-acetyl-L-cysteine

Endothelial Cell

Cannabidiol
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ROS

Nrf2

HO-1

Bafilomycin A1
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Figure 8. Proposed mechanism and functional consequence underlying cannabidiol (CBD)-induced

HO-1 expression in HUVEC. CBD leads to a concentration-dependent increase in HO-1 expression,

which is mediated by reactive oxygen species (ROS) and the transcription factor Nrf2, but not

by cannabinoid-activated membrane receptors (CB1, CB2, TRPV1). HO-1 subsequently initiates

proautophagic processes that confer anti-apoptotic and life-promoting effects. However, above a

critical concentration, as in the case of 10 µM CBD, HO-1 leads to the induction of cellular apoptosis.

Furthermore, the inhibition of HO-1-dependent CBD-induced autophagy leads to apoptosis induction

by a per se viability-promoting CBD concentration (6 µM) or to superinduction of apoptosis by a per

se cytotoxic CBD concentration (10 µM). The sequence shown with inductive and inhibitory arrows

connecting the boxes corresponds to the effect of the CBD in the absence of inhibitors of the individual

members of the signal transduction. The corresponding inhibitors are shown in italics, whereby their

target, but not their consecutive effect, is shown.

A large body of evidence supports this finding. First, CBD at concentrations between 1 and

10 µM caused a concentration-dependent upregulation of HO-1 mRNA, HO-1 protein, and Nrf2

in HUVEC. Secondly, a proautophagic effect of CBD was observed at final concentrations of 3 to
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10 µM, whereby the protective role was underlined by experiments with the autophagy inhibitor

bafilomycin A1, which led to apoptosis induction or superinduction in cells treated with 6 µM or

10 µM CBD, respectively. Thirdly, the inhibition of HO-1 by SnPPIX as well as the siRNA-mediated

knockdown of HO-1 by Nrf2 siRNA led to an inhibition of the proautophagic effect of 6 and 10 µM

CBD and the apoptosis-inducing and viability-reducing effect of 10 µM CBD. Fourth, the involvement

of cannabinoid-activated receptors (CB1, CB2, TRPV1) in CBD-induced HO-1 expression was excluded

by the use of selective receptor antagonists.

In accordance with our results, several studies have shown that the activation of Nrf2 is associated

with an accumulation of Nrf2 in the entire cell lysate [32,33,37,38] and that the release of Nrf2 from

Keap1 repression by e.g., ROS leads to the stabilization and subsequent translocation of Nrf2 into the cell

nucleus and to the activation of HO-1 transcription [39]. Regarding the demonstrated HO-1 induction by

CBD, further investigations of our group have shown that this stimulation is not restricted to endothelial

cells but also occurs in vascular smooth muscle cells [40] or in adipose-derived mesenchymal stem

cells (unpublished results), whereby in the mentioned cell types, HO-1 induction was also registered in

the presence of ∆
9-tetrahydrocannabinol (THC), which is another phytocannabinoid. Furthermore,

the induction of HO-1 expression by CBD in microglial cells [41,42] and keratinocytes [43] as well

as by CB2 agonists in Kupffer cells [44] and in myocardium [45,46] was reported, whereas the

incubation of glioma cells with the CB2 agonist JWH-133 led to a reduced HO-1 gene expression [47].

In accordance with our data, a receptor-independent but ROS-dependent upregulation of the HO-1

signaling pathway was finally also observed in breast cancer cells when fatty acid amide hydrolase,

an important endocannabinoid-degrading enzyme, was inhibited or when the cells were exposed to

the endocannabinoid anandamide [48].

In agreement with our finding demonstrating CBD-induced and ROS/HO-1-mediated protective

autophagy in endothelial cells, other studies have also shown that intracellular redox status exerts

significant effects on the autophagy process of endothelial cells. Thus, an inhibitory effect of antioxidants

on the autophagy response activated by various stimuli has been reported repeatedly [49,50].

Furthermore, there is evidence of complex interactions between autophagy and other stress processes,

such as HO-1 induction [51,52]. For this reason, the HO inhibitor SnPPIX was used to investigate

a possible relationship between the induction of HO-1 by CBD and its proautophagic effect.

The interpretation of these results was complicated by the fact that SnPPIX itself caused an upregulation

of HO-1 expression in HUVEC, which led to an overadditive increase of HO-1 expression in the

presence of CBD. On the other hand, the induction of HO-1 transcription by SnPPIX, which is well

described in the literature, is relativized by the fact that under these circumstances, the HO inhibitor

still mediates the sufficient blocking of the activity of the preformed and de novo synthesized HO-1

enzyme [53,54]. Irrespective of this, we were able to exclude possible off-target effects of SnPPIX by

testing a negative control, namely the non-HO-1-inhibiting structural analogue CuPPIX. Furthermore,

a causal relationship between HO-1 induction and autophagy could be confirmed by using Nrf2 siRNA,

which led to a downregulation of HO-1 expression. In summary, the inhibitor experiments conducted

show that HO-1 is involved in the proautophagic effects of CBD on HUVEC and thus promotes the

survival of these cells. However, excessive HO-1 expression by treatment with 10 µM CBD induces

HUVEC apoptosis.

HO-1-dependent autophagy has been demonstrated in different cell types [13–16]. In this context,

any of the catabolic end products of the HO-1 reaction (i.e., CO, biliverdine/bilirubin, iron ions)

released by heme degradation could be involved in the induction of autophagy. Studies on the role

of HO-1 products in the autophagy process showed that CO mediates corresponding proautophagic

effects [55,56]. While a low CO concentration inhibits glycolysis in endothelial cells and stimulates

ATP release by oxidative phosphorylation in conjunction with an increased tricarboxylic acid (TCA)

cycle, a high CO concentration inhibits the respiratory chain at the level of cytochrome oxidase [57,58].

The fact that WST-1 is primarily reduced by TCA cycle-derived NADH [59] supports a possible role of

low HO-1-dependent CO concentrations in increasing metabolic activity, which was observed after
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the incubation of HUVEC with 6 µM CBD. Indeed, the inhibitory effect of the autophagy inhibitor

bafilomycin A1 on mitochondrial activity increased by 6 µM CBD underlines the importance of

HO-1-mediated autophagy for the metabolic activity and survival of HUVEC. Since autophagy is

an adaptive response to the increased metabolic demand, it can be deduced that autophagy in the

presence of CO preferentially provides substrates for the TCA cycle, which maintains mitochondrial

energy metabolism [60,61]. In contrast, it is assumed that it is the increased CO concentrations resulting

from strong HO-1 expression (e.g., triggered by 10 µM CBD) that reduce mitochondrial activity and

induce apoptosis. Regarding the dual role of HO-1 for cellular viability, it has also been suggested

to use the CRISPR/dCas9 system to activate cellular HO-1 expression to an optimal level, which for

example guarantees the survival of transplanted stem cells in patients with ischemic heart disease

without triggering the cytotoxic effects associated with excessive HO-1 expression [62].

In connection with autophagy, it should be noted that the latter is not only involved in the

regulation of the survival or death of endothelial cells [63,64] but also in the modulation of other

important functions of endothelial cells, such as nitric oxide production [65], hemostasis/thrombosis [66],

and angiogenesis [52]. Pro-angiogenic effects of autophagy have been observed in human endothelial

cells treated with adipokine chemerin [67]. For the phytocannabinoid investigated in the present study,

another work of our group demonstrated a direct pro-angiogenic effect of 3 µM CBD at the level of

migration and tube formation of HUVEC [31], suggesting a possible link to the autophagy shown here.

On the other hand, it was also reported that the induction of autophagy by inhibition of mechanistic

target of rapamycin (mTOR) with rapamycin reduces the regenerative and angiogenic capacities of

endothelial cells both in vitro and in vivo [68].

For CBD, there are conflicting data on the influence on the cellular redox status. A protective

effect of CBD is supported by several studies that have demonstrated a reduction of oxidative stress by

CBD in endothelial cells, cardiomyocytes, and in a variety of other cell types and animal models of

inflammation [25,26,69–71]. On the other hand, our results show a ROS-dependent pro-oxidative effect

of CBD as the basis of increased HO-1 expression, the latter leading to autophagy and apoptosis of

HUVEC, depending on CBD concentration. In accordance with our results, the reports by other authors

also showed ROS-dependent apoptosis induction by CBD in leukemia cells, thymocytes, lymphocytes,

splenocytes, and monocytes [72–76]. In a study on oligodendrocyte progenitor cells, CBD at 1 µM

protected the cells from hydrogen peroxide and lipopolysaccharide/interferon-γ-induced death by

reducing ROS production and stress of the endoplasmic reticulum, while the treatment of cells with

higher CBD concentrations (2.5 µM and 5 µM) without further stressors induced cytotoxic effects [77].

In addition, a sensitizing/enhancing effect on the toxic effect of redox-active toxins such as hydrogen

peroxide or 6-hydroxydopamine on CBD could be demonstrated during neuronal differentiation

of cells [78]. Finally, a study using mouse hepatocytes and electron spin resonance spectroscopy

demonstrated the generation of ROS by the metabolism of the CBD [79].

Clearly, more research is needed to understand the complex, most likely bidirectional

interaction between the CBD-induced Nrf2/HO-1 upregulation and the oxidatively driven

proautophagic/proapoptotic cellular process. In this context, it was surprising that the Nrf2 induction

registered in the presence of the proapoptotic CBD concentration (10 µM) was lower than that of

6 µM CBD, although 10 µM CBD produced a comparatively stronger HO-1 induction. One reason for

this apparent contradiction could be a recently described apoptosis-related inactivation of Nrf2 [80].

In the corresponding study, curcumin initiated an induction of Nrf2 but caused a p53-independent

reduction of total and nuclear Nrf2 protein levels at later times of activation [80]. In line with this,

earlier studies had already shown that Nrf2 can also be degraded in oxidatively stressed cells, whereby

a Keap1-independent process in the cell nucleus mediated by the redox-insensitive Neh6 degron is

initiated [81].
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Furthermore, the exact, obviously cell type-dependent mechanism of HO-1 induction by CBD

poses a challenge for future investigations. In this context, a recently published study showed that CBD

mediates HO-1 expression in keratinocytes Nrf2 independently by inducing the cytosolic proteasomal

degradation of the transcriptional repressor BTB and CNC homology 1 (BACH1) and its nuclear

export [43]. Accordingly, no inhibition of the CBD-induced HO-1 expression in the presence of Nrf2

siRNA could be registered in the respective work [43]. Although in our hands the essential role of Nrf2

in HO-1 expression was underlined by a significant inhibition of CBD-induced HO-1 expression by

Nrf2 siRNA, the partial inhibition achieved under these experimental conditions cannot, however,

exclude an additional involvement of BACH1 regulation.

Finally, it remains to be clarified whether the increase in metabolic activity caused by 6 µM CBD

is causally related to CBD-induced HO-1 expression. Such a relationship is supported by inhibitor

experiments with SnPPIX, which show an approximately 43% reduction of this effect, although this

inhibition could not be substantially confirmed by Nrf2 siRNA (approximately 17% reduction) and not

at all by NAC.

Lastly, it should be mentioned that the apoptosis of HUVEC induced in our hands by 10 µM CBD

is consistent with the results describing an anti-angiogenic effect of HUVEC by CBD concentrations

of ≥9 µM [82]. However, in the latter study, it was found that cytostasis, but not the induction of

apoptosis, was responsible for the observed decrease in metabolic activity. The reasons for these

discrepant findings are unclear, but they could be due to different culture conditions. While the culture

medium we used contained ECGS, FCS, EGF, bFGF, heparin, and hydrocortisone, Solinas et al. [82]

applied a HUVEC medium, which included FCS and vascular endothelial growth factor. Against this

background, different supplements that may lead to phenotypic heterogeneity [83] could explain the

different sensitivity of HUVEC to high CBD concentrations in the different studies.

5. Conclusions

In summary, the present study demonstrates that the non-psychoactive cannabinoid CBD

promotes ROS-dependent HO-1 expression in endothelial cells, followed by HO-1-dependent protective

autophagy (Figure 8). This protection is maintained up to a certain CBD concentration (up to 6 µM in the

present study), but it is then no longer sufficient to protect the cells from the likewise HO-1-dependent

apoptotic cell death. HO-1 thereby represents a dual critical modulator of apoptosis. The data

presented here show for the first time a functional effect of cannabinoid-induced HO-1 on endothelial

viability and thus provide new impulses for the investigation of CBD-based therapeutic strategies in

cardiovascular diseases and of possible limitations in the application of higher doses.
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