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Clinical and neurobiological findings suggest that the cannabinoids and the endocannabi-

noid system may be implicated in the pathophysiology and treatment of schizophrenia. We

described that the spontaneously hypertensive rats (SHR) strain presents a schizophrenia

behavioral phenotype that is specifically attenuated by antipsychotic drugs, and potentiated

by proschizophrenia manipulations. Based on these findings, we have suggested this

strain as an animal model of schizophrenia. The aim of this study was to evaluate the

effects of cannabinoid drugs on the deficit of prepulse inhibition (PPI) of startle, the

main paradigm used to study sensorimotor gating impairment related to schizophrenia,

presented by the SHR strain.The following drugs were used: (1) WIN55212,2 (cannabinoid

agonist), (2) rimonabant (CB1 antagonist), (3) AM404 (anandamide uptake inhibitor), and

(4) cannabidiol (CBD; indirect CB1/CB2 receptor antagonist, among other effects). Wistar

rats (WRs) and SHRs were treated with vehicle (VEH) or different doses of WIN55212

(0.3, 1, or 3 mg/kg), rimonabant (0.75, 1.5, or 3 mg/kg), AM404 (1, 5, or 10 mg/kg), or

CBD (15, 30, or 60 mg/kg). VEH-treated SHRs showed a decreased PPI when compared

to WRs. This PPI deficit was reversed by 1 mg/kg WIN and 30 mg/kg CBD. Conversely,

0.75 mg/kg rimonabant decreased PPI in SHR strain, whereas AM404 did not modify it.

Our results reinforce the role of the endocannabinoid system in the sensorimotor gating

impairment related to schizophrenia, and point to cannabinoid drugs as potential therapeutic

strategies.
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INTRODUCTION

Prepulse inhibition (PPI) of startle is characterized by the reduc-

tion of an acoustic startle reflex to an intense acoustic stimulus

(pulse) when immediately preceded by a lower intensity stimulus

(prepulse; Swerdlow et al., 2001). PPI is considered an opera-

tional measure of sensorimotor gating, and is extensively used

in translational models of psychosis since it appears to be present

in all mammals, including rats and humans (Swerdlow et al., 1994,

2000), and is disrupted in schizophrenia patients (Braff and Geyer,

1990; Braff et al., 1992, 1999; Weike et al., 2000).

The spontaneously hypertensive rat (SHR) strain was devel-

oped by selecting brother–sister mating Wistar rats (WRs) with a

hypertensive phenotype (Okamoto and Aoki, 1963). Along with

the hypertension presented by these animals, the inbreeding also

selected behavioral abnormalities that lead to suggest them as a

putative animal model of attention deficit/hyperactivity disor-

der (Sagvolden and Sergeant, 1998; Russell, 2007). This strain

presents sustained attention problems, hyperactivity in a variety

of behavioral paradigms and impulsivity (Sagvolden et al., 1992;

Russell, 2007). Nevertheless, the absence of beneficial effects of

psychostimulants (used to treat this disorder) on these behaviors in

adult SHRs (van den Bergh et al., 2006; Bizot et al., 2007; Calzavara

et al., 2009) has been described. In fact, some behavioral changes

are even potentiated by these drugs (Calzavara et al., 2009). It is

noteworthy that most of the studies using the SHR strain to investi-

gate attention deficit/hyperactivity disorder were performed using

the Wistar-Kyoto strain (WKY – developed by inbreeding WRs

without hypertension) as controls, which may be unsuitable since

it has been reported that WKY animals present an inactivity when

compared to WRs (Pare, 1992, 1994), and do not show genetic sim-

ilarities when compared to the SHR strain (Johnson et al., 1992;

St Lezin et al., 1992).

Recently, our group has reported that the SHR strain, when

compared to WRs, presents many behavioral changes that are

specifically reversed by antipsychotic drugs and potentiated by

proschizophrenia manipulations. Particularly, this strain displays

impaired social interaction (mimics negative symptoms) that

is specifically ameliorated by atypical antipsychotics and aggra-

vated by amphetamine (Calzavara et al., 2011), hyperlocomotion

(mimics positive symptoms) attenuated by antipsychotics and
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potentiated by amphetamine (Calzavara et al., 2011) and a

deficit in contextual fear conditioning (CFC – model of emo-

tional processing) that is reversed specifically by antipsychotics

and potentiated by psychostimulants or other proschizophre-

nia manipulations, such as ketamine administration and sleep

deprivation (Calzavara et al., 2009). Moreover, this strain has

a basal PPI deficit specifically reverted by the atypical antipsy-

chotic clozapine (Levin et al., 2011). These findings rein-

force the SHR strain as an animal model to study several

aspects of schizophrenia, including abnormalities in sensorimotor

gating.

It is noteworthy that previous studies describe controversial

results in relation to PPI in SHRs using control strains other

than the WRs. Some studies show that SHRs present PPI deficits

when compared to WKY (Ferguson and Cada, 2004; Kinkead et al.,

2006), to Sprague-Dawley (SD; Ferguson and Cada, 2004), or to

Lewis rats (Vendruscolo et al., 2006). Conversely, other studies

demonstrate that PPI tended to be higher in SHRs and WKY than

in SD rats (van den Buuse, 2004), or that SHRs have intermediate

PPI values (Brown-Norway < SHR < SD < WKY – Palmer et al.,

2000).

Several clinical and neurobiological findings suggest that some

cannabinoids and the endocannabinoid system may be implicated

in schizophrenia (Leweke et al., 2004; D’Souza et al., 2009). Some

studies suggest that cannabis abuse is a method of self-medication

for negative symptoms of the disease (Peralta and Cuesta, 1992;

Bersani et al., 2002), or side effects of antipsychotics (Krystal et al.,

1999; Verdoux et al., 2005). Other studies report that cannabis

consumption may induce a psychotic state in normal individu-

als, worsen psychotic symptoms of schizophrenia patients, and

facilitate precipitation of schizophrenia in vulnerable individu-

als (Ujike and Morita, 2004; Sewell et al., 2010). In postmortem

studies, schizophrenia patients showed an increased density of

the cannabinoid CB1 receptor binding in corticolimbic regions

involved in this disorder (Dean et al., 2001; Zavitsanou et al.,

2004; Newell et al., 2006; Dalton et al., 2011), indicating their

role in negative symptoms and cognitive impairments (Gallinat

et al., 2012). Moreover, elevated anandamide levels in the cere-

brospinal fluid (Leweke et al., 2007; Koethe et al., 2009) and plasma

(De Marchi et al., 2003) of patients with schizophrenia have been

described.

Recently, we have demonstrated that CBD – a non-

psychotomimetic compound of the Cannabis sativa plant that

presents antipsychotic properties (Zuardi et al., 2012) – and

rimonabant – a CB1 receptor antagonist (Rinaldi-Carmona et al.,

1994) – were able to reverse the deficit in CFC task presented by

SHRs. These results suggest that these drugs could constitute an

alternative for the treatment of abnormalities in emotional context

processing related to schizophrenia (Levin et al., 2012).

In order to further investigate the potential of the endocannabi-

noid system as target for the treatment of schizophrenia, the aim

of this study was to evaluate the effects of cannabinoid drugs on

the deficit of PPI presented by the SHR strain. For this purpose,

dose–response curves of the following drugs were investigated:

WIN55212,2 (cannabinoidagonist), rimonabant (CB1 antago-

nist), AM404 (anandamide uptake inhibitor), and CBD (indirect

CB1/CB2 receptor antagonist, among other effects).

MATERIALS AND METHODS

ANIMALS

Five-month-old, male WRs and SHRs of our own colony were

housed under conditions of controlled temperature (22–23◦C)

and lighting (12/12 h light/dark cycle, lights on at 07:00

am). Groups of five animals were kept in Plexiglas cages

(41 cm × 34 cm × 16.5 cm), with free access to food and water.

The animals were maintained in accordance with the guidelines of

the Committee on Care and Use of Laboratory Animal Resources,

National Research Council, USA. This study was approved by the

Ethical Committee of Federal University of Sao Paulo. All rats used

were drug-naive before each experiment.

DRUGS

WIN55212,2 (Tocris) and CBD (THC-Pharm, Frankfurt, Ger-

many and STI-Pharm, Brentwood, UK) were dissolved in Tween 80

and 0.9% saline. Rimonabant (Sanofi-Aventis®) was dissolved in

ethanol, Tween 80 and 0.9% saline (ratio 1:1:18). AM404 (Tocris)

was dissolved in Dimethyl Sulfoxide (DMSO) and Tween 80 and

then diluted in 0.9% saline. Control solutions consisted of saline

plus Tween 80, DMSO or ethanol, depending on the drugs used in

each experiment. All drug solutions were injected intraperitoneally

(i.p.) in a volume of 1 ml/kg body weight.

APPARATUS

The rats were placed in a stabilimeter, which consisted of a wire-

mesh cage (16.5 cm × 5.1 cm × 7.6 cm) suspended within a

polyvinyl chloride frame (25 cm × 9 cm × 9 cm) attached to

the response platform with four thumbnail-screws. The stabilime-

ter and platform were located inside a ventilated plywood sound

attenuating chamber (64 cm × 60 cm × 40 cm). The floor of the

stabilimiter consisted of six stainless steel bars 3.0 mm in diameter

and spaced 1.5 cm apart. The startle reaction of the rats gen-

erated a pressure on the response platform and analog signals

were amplified, digitized, and analyzed by software of the startle

measure system (Insight, São Paulo, Brazil), that also controlled

other parameters of the session (intensity of the acoustic stimu-

lus, inter-stimulus interval, etc). Two loudspeakers located 10 cm

above the floor, on each lateral side of the acoustic isolation cham-

ber, were used to deliver the prepulse stimulus, the acoustic startle

stimulus, and continuous background noise. Calibration proce-

dures were conducted before the experiments to ensure equivalent

sensitivities of the response platforms over the test period.

PPI TESTING

The PPI testing began 30 min after the injection, by placing

each animal in the stabilimeter cage where they were exposed

to a background (65 dB) noise for 5 min. After this acclimati-

zation period, the rats were submitted to a series of 10 stimuli

(pulse alone – 120 dB, 50 ms duration), with an average inter-

trial interval of 20 s. The purpose of this phase was to allow

within-session habituation (not calculated herein) to the star-

tle stimulus, and was not included in the calculation of PPI

values nor of acoustic startle response (ASR). Thereafter, the

PPI modulation of the acoustic startle was tested: this phase

consisted of pseudorandomly delivered trials divided into four

different categories presented with an average inter-trial interval
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of 20 s: 20 presentations of pulse alone (120 dB, 50 ms dura-

tion), 8 presentations of each prepulse alone (70, 75, and 80 dB,

3000 Hz frequency, 20 ms duration), 10 presentations of each pre-

pulse + pulse (with 100 ms interval), and 8 no-stimulus trials

(stabilimeter recordings obtained when no stimulus was pre-

sented). Mean amplitude of startle responses to pulse-alone (P)

and prepulse-pulse (PP + P) trials was calculated for each sub-

ject. The level of PPI in each rat was determined by expressing the

prepulse + pulse startle amplitude as a percentage decrease from

pulse-alone startle amplitude, according to the following formula:

%PPI = 100 − [100 × (PP/P)]. The ASR was expressed as the

average of the 20 P trials.

All rats were submitted to a previous PPI session without drug

administration. After this session, called “matching” (Swerdlow

et al., 2005), rats were distributed into pharmacological groups

[vehicle (VEH) or drug, for each experiment] matched for

basal %PPI. Seven days later, each rat was submitted to a test

session.

STATISTICAL ANALYSIS

The ASR results were analyzed by two-way ANOVA (strain

X treatment). The %PPI data were analyzed by three-way

ANOVA with treatment and strain as between-subjects fac-

tors and prepulse intensity as within-subject factor. Since no

interaction between strain and prepulse intensity, or treatment

and prepulse intensity were detected, the post hoc compari-

son was then performed with the mean %PPI for the three

prepulse intensities. Moreover, when an interaction between

treatment and strain were detected, the data from each strain

was analyzed separately. All post hoc comparisons were per-

formed using Dunnett’s test, with VEH treatment as the control

condition.

It is known that ASR might influence %PPI (Csomor et al.,

2008). In this sense, the %PPI results were also analyzed by three-

way repeated measures analysis of covariance (ANCOVA) with

ASR as covariant (as suggested by Csomor et al., 2008), treatment

and strain as between-subjects factors and prepulse intensity as

within-subject factor. If a difference detected on ANOVA remained

significant on ANCOVA, it is possible to state that the difference

was not solely due to influences of ASR. The p < 0.05 was used

as criterion for statistical significance. All statistical analyses were

conducted on the software SPSS 20.

EXPERIMENTAL DESIGN

Experiment 1: effect of WIN55212,2 (cannabinoid agonist) on %PPI

and ASR of WRs and SHRs

Wistar rats and SHRs were treated with VEH, 0.3, 1, or

3 mg/kg WIN 55212,2 (WIN; n = 10, per strain and treat-

ment). Thirty minutes later, the rats were submitted to the PPI

test.

Experiment 2: effect of rimonabant (CB1antagonist) on %PPI and

ASR of WRs and SHRs

Wistar rats and SHRs were treated with VEH or 0.75, 1.5, or

3 mg/kg rimonabant (RIMO; n = 9–11, per strain and treat-

ment). Thirty minutes later, the animals were submitted to the PPI

test.

Experiment 3: effect of AM404 (anandamide uptake inhibitor) on

%PPI and ASR of WRs and SHRs

Wistar rats and SHRs were treated with VEH or 1, 5, or 10 mg/kg

AM404 (AM; n = 9–11, per strain and treatment). Thirty minutes

later, the animals were submitted to the PPI test.

Experiment 4: effect of cannabidiol (a cannabinoid with

antipsychotic property) on %PPI and ASR of WRs and SHRs

Wistar rats and SHRs were treated with VEH or 15, 30, or 60 mg/kg

CBD (n = 9–10, per strain and treatment). Thirty minutes later,

the animals were submitted to the PPI test. In all the experiments,

each animal was used for only one drug condition.

RESULTS

EXPERIMENT 1: EFFECT OF WIN 55212,2 (CANNABINOID AGONIST) ON

%PPI AND ASR OF WRs AND SHRs

Two-way ANOVA showed only a significant effect of strain on ASR

[F(1,72) = 31.93; p < 0.001]. WRs presented a higher ASR when

compared to SHRs (Table 1).

Three-way repeated measures ANOVA revealed significant

effects of prepulse intensity (reflecting that the more intense the

prepulse, the higher the PPI) [F(2,144) = 26.65; p < 0.001], strain

(reflecting a decreased PPI in SHRs) [F(1,72) = 18.87; p < 0.001],

and an interaction between strain and treatment [F(3,72) = 3.15,

p = 0.030] on %PPI. Neither treatment nor interactions between

%PPI and treatment or strain reached significance. All the effects

detected on ANOVA remained significant on ANCOVA. Post hoc

analysis showed that treatment with 1 mg/kg WIN increased %

PPI in SHRs (p = 0.035; Figure 1).

EXPERIMENT 2: EFFECT OF RIMONABANT (CB1 ANTAGONIST) ON %PPI

AND ASR OF WRs AND SHRs

Two-way ANOVA showed only a significant effect of strain on ASR

[F(1,75) = 19.71; p < 0.001]. WRs presented a higher ASR when

compared to SHRs (Table 1).

Three-way repeated measures ANOVA showed significant

effects of prepulse intensity (reflecting that the more intense the

prepulse, the higher the PPI) [F(2,150) = 53.45; p < 0.001],

strain (reflecting a decreased PPI in SHRs) [F(1,75) = 32.50;

p < 0.001] and an interaction between strain and treatment

[F(3,75) = 7.26, p < 0.001] on %PPI. Neither treatment nor

interactions between %PPI and treatment or strain reached sig-

nificance. All the effects detected on ANOVA remained significant

on ANCOVA. Post hoc analysis showed that that treatment with

0.75 mg/kg RIMO decreased %PPI in SHRs (p = 0.017; Figure 2).

EXPERIMENT 3: EFFECT OF AM404 (ANANDAMIDE UPTAKE INHIBITOR)

ON %PPI AND ASR OF WRs AND SHRs

Two-way ANOVA showed only a significant effect of strain on ASR

[F(1,72) = 37.48; p < 0.001]. WRs presented a higher ASR when

compared to SHRs (Table 1).

Three-way repeated measures ANOVA showed significant

effects of prepulse intensity (reflecting increased PPI by increasing

the intensity of prepulse) [F(2,144) = 10,89; p < 0.001] and strain

(reflecting a decreased PPI in SHRs) [F(1,72) = 31.23; p < 0.001].

Neither treatment nor any possible interaction with this factor

reached significance (reflecting that there was no effect of AM404
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Table 1 | Acoustic startle response (ASR) of Wistar rats (WRs) and spontaneously hypertensive rats (SHRs) treated with vehicle (VEH), 0.3, 1, or
3 mg/kg WIN55212,2 (WIN – Experiment 1);VEH, 0.75, 1.5, or 3 mg/kg rimonabant (RIMO – Experiment 2);VEH, 1, 5, or 10 mg/kg AM404
(AM – Experiment 3);VEH, 15, 30, or 60 mg/kg cannabidiol (CBD – Experiment 4).

Experiment 1 VEH WIN 0.3 WIN 1 WIN 3

WRs 464.6 ± 107.3 (n = 10) 422.3 ± 161.4 (n = 10) 588.3 ± 151.4 (n = 10) 588 ± 176.9 (n = 10)

SHRs 87.8 ± 10.7* (n = 10) 82.3 ± 10.7* (n = 10) 87.6 ± 15.1* (n = 10) 82.5 ± 27.3* (n = 10)

Experiment 2 VEH RIMO 0.75 RIMO 1.5 RIMO 3

WRs 491.2 ± 109.3 (n = 11) 477.3 ± 138.8 (n = 11) 534.4 ± 144.1 (n = 11) 158.6 ± 76.3 (n = 11)

SHRs 198.7 ± 115.1* (n = 9) 71.1 ± 9.4* (n = 10) 140.5 ± 31.1* (n = 11) 85.2 ± 8.6* (n = 10)

Experiment 3 VEH AM 1 AM 5 AM 10

WRs 478.0 ± 136.3 (n = 10) 539.6 ± 157.0 (n = 9) 613.2 ± 126.9 (n = 10) 450.7 ± 125.8 (n = 10)

SHRs 127.2 ± 13.8* (n = 10) 135.3 ± 27.9* (n = 11) 76.0 ± 10.6* (n = 10) 100.0 ± 23.2* (n = 10)

Experiment 4 VEH CBD 15 CBD 30 CBD 60

WRs 486.2 ± 188.3 (n = 10) 239.6 ± 98.2 (n = 9) 234.3 ± 56.6 (n = 10) 343.7 ± 72.3 (n = 10)

SHRs 92.5 ± 8.2* (n = 10) 76.1 ± 8.5* (n = 10) 117.4 ± 13.6* (n = 10) 57.1 ± 6.9* (n = 10)

*p < 0.001 compared to WRs. Two-way ANOVA. Data are reported as mean ± SE.

FIGURE 1 | %PPI of Wistar rats (WRs) and spontaneously hypertensive

rats (SHRs) treated with vehicle (VEH), 0.3, 1, or 3 mg/kg WIN55212,2

(WIN). *p < 0.001 compared to WRs. #p < 0.05 compared to VEH group of

the same strain. Three-way repeated measures ANOVA followed by

Dunnett’s test. Data are reported as mean ± SE.

on %PPI in any of the strains). All the effects detected on ANOVA

remained significant on ANCOVA. (Figure 3).

EXPERIMENT 4: EFFECT OF CANNABIDIOL (A CANNABINOID WITH

ANTIPSYCHOTIC PROPERTY) ON %PPI AND ASR OF WRs AND SHRs

Two-way ANOVA showed only a significant effect of strain on ASR

[F(1,71) = 17.27; p < 0.001]. WRs presented a higher ASR when

compared to SHRs (Table 1).

Three-way repeated measures ANOVA showed significant

effects of prepulse intensity (reflecting increased PPI by increasing

the intensity of prepulse) [F(2,142) = 13.83; p < 0.001], strain

(reflecting a decreased PPI in SHRs) [F(1,71) = 41.08; p < 0.001]

and treatment [F(3,71) = 5.99; p = 0.001]. None of the inter-

actions between these factors reached significance. All the effects

detected on ANOVA remained significant on ANCOVA. Post hoc

FIGURE 2 | %PPI of Wistar rats (WRs) and spontaneously hypertensive

rats (SHRs) treated with vehicle (VEH), 0.75, 1.5, or 3 mg/kg

rimonabant (RIMO). *p < 0.001 compared to WRs. #p < 0.05 compared

to VEH group of the same strain. Three-way repeated measures ANOVA

followed by Dunnett’s test. Data are reported as mean ± SE.

analysis revealed that treatment with 30 mg/kg CBD increased PPI

response (p = 0.020; Figure 4).

DISCUSSION

Our data show that SHRs have deficits in baseline PPI (corrobo-

rating previous data from our group – Levin et al., 2011) and ASR

when compared to WRs. These findings are in accordance with

clinical studies in schizophrenia which show disrupted PPI (Braff

and Geyer, 1990; Braff et al., 1992, 1999; Weike et al., 2000), and

lower startle reactivity (Quednow et al., 2006, 2008 – but see Gril-

lon et al., 1992; Weike et al., 2000; Xue et al., 2012 and comments

on the possible reasons for these negative results in Quednow et al.,

2006) when compared to controls, and reinforce the SHR strain

as an animal model to study abnormalities in sensorimotor gating

related to schizophrenia.
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FIGURE 3 | %PPI of Wistar rats (WRs) and spontaneously hypertensive

rats (SHRs) treated with vehicle (VEH), 1, 5, or 10 mg/kg AM404 (AM).

*p < 0.001 compared to WRs. Three-way repeated measures ANOVA

followed by Dunnett’s test. Data are reported as mean ± SE.

FIGURE 4 | %PPI of Wistar rats (WRs) and spontaneously hypertensive

rats (SHRs) treated with vehicle (VEH) or 15, 30, or 60 mg/kg

cannabidiol (CBD). *p < 0.001 compared to WRs. #p < 0.05 compared to

VEH group. Three-way repeated measures ANOVA followed by Dunnett’s

test. Data are reported as mean ± SE.

It could be argued that the deficit in PPI in SHR might be a

consequence of the lower level of ASR displayed by this strain,

observed also in other studies (using WKY and SD rats as control

strains – Ferguson and Cada, 2003; van den Buuse, 2004). Never-

theless, this does not seem to be the case because the changes in

PPI induced by the drugs tested (increase or decrease – described

below) were not accompanied by changes in ASR levels (Table 1).

In addition, previous work in humans and rodents suggests that

lower baseline ASR is associated with higher PPI (Csomor et al.,

2008), which is opposite to what we observed in SHR. Therefore,

the reduced PPI in SHR is probably not due to their diminished

ASR. However, since ASR might influence PPI and the drugs

used could have induced subtle changes in ASR, the data were

re-analyzed with ASR as covariate (as suggested by Csomor et al.,

2008). The results of these analyses reinforce that the effects seen

on %PPI were not due to differences in ASR.

As commented above, several clinical and neurobiological find-

ings suggest that cannabinoids and the endocannabinoid system

are implicated in schizophrenia (Leweke et al., 2004; D’Souza

et al., 2009). Our data show that cannabinoid drugs differentially

modulate the spontaneous deficit of PPI presented by SHRs.

Concerning cannabinoid agonists, the interaction of �
9-

tetrahydrocannabidiol (THC – the primary psychotropic con-

stituent of Cannabis sativa plant) with CB1 receptors seems

to be responsible for its psychotomimetic effects: induction

of a psychotic state in normal individuals, worsening of psy-

chotic symptoms of schizophrenic patients, and precipitation of

schizophrenia in vulnerable individuals (Ujike and Morita, 2004;

Sewell et al., 2010). Concerning specifically PPI, although one

clinical study did not observe alterations of PPI in drug-free

chronic cannabis users (Quednow et al., 2004), another showed

that chronic cannabis use in healthy individuals was associated

with attention-modulated reduction in PPI resembling the PPI

deficit in schizophrenia (Kedzior and Martin-Iverson, 2006). In

addition, Mathias et al. (2011) did not observe differences in PPI

among adolescent cannabis users and controls, but they detected a

more rapid decline in PPI in frequent cannabis users. The authors

suggested that this could reflect a progressive reduction in the qual-

ity of information processing or sustained attention across the PPI

session.

With respect to rodent studies, treatment with the cannabi-

noid agonist WIN has been reported to disrupt sensorimotor

gating in systemically treated animals (Schneider and Koch, 2002;

Wegener et al., 2008), and after intra-prefrontal cortex and intra-

ventral hippocampus infusion (Wegener et al., 2008). It also

impaired recognition memory (Schneider and Koch, 2002), CFC

(Pamplona and Takahashi, 2006) and social interaction (Almeida

et al., in press) in rats. Consistent with this, our results showed

a trend toward a decrease in PPI in WRs treated with the low-

est dose of this compound (p = 0.095 – Figure 1). On the other

hand, in accordance the ability of WIN (1 mg/kg) to reverse the

basal PPI deficit in SHRs (Figure 1), other studies have shown

that in animals with low basal PPI, such as phencyclidine-treated

rats (which induces “schizophrenia-like behaviors” – Gouzoulis-

Mayfrank et al., 2005) and psychosocially stressed mice (Brzozka

et al., 2011), treatment with WIN reverses this deficit. In addi-

tion, other behavioral abnormalities induced by phencyclidine are

also reversed by this compound: impairments in novel object

recognition, and in social interaction (Spano et al., 2010), as

well as hyperlocomotion and anxiogenic behavior (Spano et al.,

2012). Consistent with this, another study from our group

demonstrates a beneficial effect of WIN on the deficit of social

interaction (mimicking the negative symptoms of schizophre-

nia – Sams-Dodd, 1998) presented by SHRs (Almeida et al.,

in press). Of note, the impairment of social interaction of

SHRs was attenuated only by atypical antipsychotics (Calzavara

et al., 2011). Finally, a study in a small group of schizophrenia

patients reported that treatment with synthetic THC (dronabi-

nol) improves the symptoms of the disease (Schwarcz et al.,

2009).

Taken as a whole, these data indicate that cannabinoid agonists

may present differential effects in controls and schizophrenia. This

observation might reflect dysfunctions of the endocannabinoid

system associated with schizophrenia that would also be displayed

by SHRs. In this sense, recently, our group showed that, as observed
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in schizophrenia patients (Dean et al., 2001; Zavitsanou et al., 2004;

Dalton et al., 2011), the SHR strain has a higher CB1 receptor

density in the prefrontal and anterior cingulate cortices when

compared to WRs (Levin et al., submitted).

Only one dose of WIN increased PPI in SHR. Several previous

studies have demonstrated similar biphasic effects of cannabinoid

agonists in different paradigms: low doses of these components

usually induce anxiolytic-like effects, while higher doses are anx-

iogenic or ineffective (Hill and Gorzalka, 2004; Viveros et al.,

2005; Fogaca et al., 2012). Moreover, a low dose (0.1 mg/kg) of

WIN stimulated motor activity, whereas a higher dose (1 mg/kg)

decreased this response (Polissidis et al., 2013). Similarly, in mice

submitted to a CFC task, THC exerted biphasic effects on fear-

coping strategies, with lower and higher doses favoring active

and passive responses, respectively (Metna-Laurent et al., 2012).

This profile was also detected in clinical studies which observed

that low and moderate THC doses had anxiolytic and euphoric

properties, while higher doses produced anxiogenic responses (for

review, see Crippa et al., 2010). These variable effects, depending

on the dose, could be due to the wide neuroanatomical distribu-

tion of the endocannabinoid system and its modulatory effects on

both GABAergic and glutamatergic neurons (Moreira and Lutz,

2008; Fogaca et al., 2012; Metna-Laurent et al., 2012). This could

explain the inverted U-shaped dose–response curve of WIN on

PPI in SHRs (Figure 1), indicating that this dose-dependent effect

of cannabinoid agonists can also be seen for sensorimotor gating

deficits.

Regarding the effects of the CB1 receptor antagonist rimona-

bant, our data revealed that the lowest dose (0.75 mg/kg) worsened

the PPI deficit presented by SHRs (Figure 2). On the other hand,

a recent study of our group showed that 3 mg/kg rimonabant was

able to reverse the deficit in CFC in SHRs (Levin et al., 2012).

Any of the doses tested was able to modify the impairment in

social interaction and hyperlocomotion presented by this strain

(Almeida et al., in press). In this sense, the effects of CB1 antag-

onist seem to depend on the behavior evaluated and the dose

used.

Indeed, previous studies on the effects of rimonabant on

schizophrenia-like behaviors in animal models have shown con-

trasting results (Roser et al., 2010). While some studies showed

that rimonabant was able to counteract the disruption of PPI

produced by the N-methyl-D-aspartate (NMDA) antagonists,

phencyclidine and Dizocilpine (MK-801), and by the dopamine

agonist, apomorphine (Malone et al., 2004; Ballmaier et al., 2007),

others demonstrated that this drug did not reverse the PPI-

disruptive effects of apomorphine, amphetamine or MK-801,

nor the amphetamine-induced hyperactivity or stereotypy in rats

(Martin et al., 2003). Malone and Taylor (2006) demonstrated that

rimonabant reversed the THC-induced deficits in PPI in socially

isolated rats (a long-term environmental manipulation used as

an animal model of schizophrenia – Weiss et al., 2000) but did

not reverse the isolation-induced deficits in PPI per se (Malone

and Taylor, 2006). On the other hand, Ferrer et al. (2007) showed

that rimonabant potentiated stereotyped behavior induced by the

D1 and D2 dopamine agonists, (±)-1-phenyl-2,3,4,5-tetrahydro-

(1H)-3-benzazepine-7,8-diol (SKF-38393) and quinpirole (model

of positive symptoms – Ferrer et al., 2007). Finally, rimonabant

increased c-fos expression in mesocorticolimbic areas of rats

(Alonso et al., 1999), similar to typical and atypical antipsychotics

(Robertson and Fibiger, 1992). In addition, other CB1 antago-

nists (AM251 and AVE 1625) seem to reverse the cognitive deficits

observed in pharmacological (Black et al., 2011; Guidali et al.,

2011) and neurodevelopmental (Zamberletti et al., 2012) animal

models of schizophrenia.

Interestingly, no effect was observed in WRs corroborating

previous data that show that rimonabant is not able to mod-

ify PPI under normal conditions (Martin et al., 2003; Ballmaier

et al., 2007), and reinforcing its specificity to “schizophrenia-like”

behaviors.

Clinical data with rimonabant are also conflicting. Some clin-

ical trials failed to show any antipsychotic effect of rimonabant

(Meltzer et al., 2004). On the other hand, in a small sample-size

study, rimonabant produced a significant improvement in Brief

Psychiatric Rating Scale (BPRS) of schizophrenic patients (Kelly

et al., 2011). Conversely, Roser et al. (2011) showed that rimona-

bant produced a significant deficit in auditory sensory memory in

the ketamine model of schizophrenia.

Taken together, under our experimental conditions, the

cannabinoid receptor agonist WIN reversed PPI deficits in SHRs,

whereas the CB1 antagonist rimonabant enhanced this deficit,

indicating that the CB1 receptor might be involved in both basal

PPI deficits seen here as well as in the modulatory effects of these

drugs. High densities of CB1 receptors have been found in brain

areas that regulate sensorimotor gating such as prefrontal cortex,

amygdala and hippocampus (Dissanayake et al., 2013). Moreover,

CB1 receptors have a modulatory role on specific neurotransmitter

systems, mainly glutamate, GABA and dopamine (Schlicker and

Kathmann, 2001), which have a critical role in the PPI processing.

Supporting the involvement of the endocannabinoid system

in schizophrenia, elevated anandamide levels in the cerebrospinal

fluid (Leweke et al., 1999; Leweke et al., 2007; Koethe et al., 2009)

and plasma (De Marchi et al., 2003) of patients with schizophrenia

have been described. Moreover, studies showed that anandamide

levels were inversely correlated with psychotic symptoms (Giuf-

frida et al., 2004) and low levels of this endocannabinoid are a risk

factor for psychosis (Koethe et al., 2009). These studies suggest

that increased levels of anandamide in schizophrenia might play

a protective role to counteract the abnormalities in neurotrans-

mission during acute symptoms. Reinforcing this, Leweke et al.

(2012) showed that treatment with CBD resulted in a significant

increase in anandamide levels, which was accompanied by clinical

improvement in schizophrenic patients.

In accordance with a protective role of anandamide, 5 mg/kg

AM404 (anandamide uptake inhibitor) was able to attenuate the

hyperlocomotion and impaired social interaction presented by

SHR (Almeida et al., in press). It is noteworthy that the same

range of doses used in that study and in the present one, was pre-

viously shown to increase anandamide levels in plasma (Giuffrida

et al., 2000) and brain regions (Bortolato et al., 2006) of rats. Local

injections of this compound also prevented the stereotypy and

hyperlocomotion induced by dopamine receptor agonist treat-

ment (Beltramo et al., 2000). Accordingly, Seillier et al. (2010)

demonstrated that fatty acid amidrohydrolase inhibitors reversed

PCP-induced social impairment. Nevertheless, in the present
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study AM404 did not modify the PPI deficit in SHRs at any

dose (Figure 3). In this sense, the possible antipsychotic pro-

file of anandamide enhancers does not seem to include all the

“schizophrenia-like” behaviors.

In control WRs, AM404 did not modify PPI (Figure 3). In con-

trast, a previous study suggested that AM404 (at similar doses used

in the present study) disrupted PPI (Fernandez-Espejo and Galan-

Rodriguez, 2004), increased locomotion and decreased social

interaction (Almeida et al., in press) in control strains. Differences

in the behavioral paradigms or rat strains might account for the

variable profile of AM404 in control animals.

Cannabidiol, one of the major constituent of Cannabis sativa

(Grlie, 1976), is devoid of the typical psychotomimetic effects of

the plant (Zuardi, 2008; Crippa et al., 2010; Zuardi et al., 2010).

Several clinical studies revealed that this component does induce

central effects (Zuardi et al., 2010) including antipsychotic prop-

erties (Zuardi et al., 2006, 2010, 2012; Leweke et al., 2007). Several

clinical trials reveal that antipsychotic-like activity of CBD can

be demonstrated against psychotic symptoms induced in healthy

volunteers (Leweke et al., 2000; Zuardi et al., 2006; Borgwardt

et al., 2008; Bhattacharyya et al., 2009, 2010; Winton-Brown et al.,

2011), and in patients with Parkinson’s Disease (Zuardi et al.,

2009) or schizophrenia (Zuardi et al., 1995, 2006; Leweke et al.,

2007, 2012). Interestingly, these studies showed that CBD pro-

duces fewer (Leweke et al., 2007) or no (Zuardi et al., 1995, 2006,

2009; Leweke et al., 2012) side effects when compared to other

antipsychotics and suggest it may be an effective and well-tolerated

alternative treatment for schizophrenia (Zuardi,2008; Zuardi et al.,

2012; Bergamaschi et al., 2011).

This profile is supported by several animal studies (Zuardi et al.,

2006; Roser and Haussleiter, 2012). CBD was able to reverse MK-

801-induced disruption of PPI (Long et al., 2006), inhibited the

hyperlocomotion induced by amphetamine and ketamine in mice

(Moreira and Guimaraes, 2005), and reversed the reduction in

social interaction produced by THC (Malone et al., 2009) and

MK-801 (Gururajan et al., 2011) in rats. Long et al. (2012) showed

that long-term CBD enhanced social interaction in neuregulin-1

mutant mice (a putative animal model of schizophrenia – Long

et al., 2012). Recently, our group showed that CBD was able

to reverse the deficit in CFC presented by SHRs (Levin et al.,

2012). Moreover, similar to the atypical antipsychotic clozapine

(Robertson and Fibiger, 1992), CBD induced c-fos immunoreac-

tivity in the nucleus accumbens (but not in the striatum) of rats

(Guimaraes et al., 2004). The present results further support the

antipsychotic profile of CBD since the dose of 30 mg/kg was able

to reverse the deficit in PPI presented by SHRs.

Interestingly, contrary to the specificity of effect for PPI deficits

in SHRs seen with WIN and rimonabant, the same dose of CBD

increased PPI in both WRs and SHRs (Figure 4). In this respect,

it might be suggested that the effects of CBD on molecular tar-

gets other than cannabinoid receptors (affected by WIN and

rimonabant) could account for its different profile of action. The

molecular targets of CBD are not completely elucidated. Stud-

ies have suggested that CBD activates vaniloid receptors transient

receptor potential cation channel subfamily V member 1 (TRPV1),

inhibits the cellular uptake and hydrolysis of anandamide (Bisogno

et al., 2001), acts as an agonist at the 5HT1A receptor (Russo et al.,

2005), and acts as an indirect CB1/CB2 antagonist (Pertwee, 2008),

as well as an antagonist at the novel cannabinoid receptor G

protein-coupled receptor 55 (Campos et al., 2012). Although it

was not the aim of this study to reveal the neural mechanism

behind the effects of cannabinoid drugs on PPI, it is interesting

to note that the clinical improvement in schizophrenic patients

induced by CBD was accompanied by an increase in anandamide

levels (Leweke et al., 2012). However, our data suggest that the

enhancing effect of CBD on PPI does not seem to be due only

to an increase in anandamide levels, since AM404 (anandamide

uptake inhibitor) did not modify this response. In this context,

Bisogno et al. (2001) revealed that CBD is more potent in acti-

vating TRPV1 receptors than in inhibiting anandamide hydrolysis

and uptake. Strengthening the role of TRPV1 in the beneficial

effect of CBD, the attenuation of MK-801-induced PPI deficits is

prevented by pretreatment with capsazepine, a TRPV1 antagonist

(Long et al., 2006).

In conclusion, our results indicate that the sensorimotor gat-

ing impairment in SHRs can be modulated by cannabinoid drugs

pointing to these compounds as potential therapeutic strategies.

More specifically, the present study suggests a beneficial property

of a direct cannabinoid receptor agonist (WIN55,212) and of CBD

on the PPI deficits associated to schizophrenia.
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